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Rotary movements of the object around the position of equilibrium is the most common type of dynamics in
nature. The way of plotting trajectory resembles winding a line onto a cone of revolution or some other solid of
revolution. The state of equilibrium, which is usually not reached by the system, is marked with the cone axis.
The trajectory can move away from the state of equilibrium, or get closer to it. A similar behavior is observed
in many two-dimensional economic models, both linear, and nonlinear. The simplest example is a linear cobweb
model, where – depending on slopes of linear demand function and linear function of supply – price and quantity
make a broken line with a growing, constant or decreasing amplitude around the equilibrium point. In nonlinear
models, trajectories are more realistic. A natural space for exploring spiral trajectories is a three-dimensional
space. Usually, it requires magnifying the model’s dimension by one. Economic vortices are made up by economic
vectors of three constituents. It may be price, quantity, and time. Apparently, flat zigzags that can be seen on
two-dimensional graphs of cobweb models are orthogonal projections of spinning trajectories. Vortexes created by
nonlinear models are much smoother than the vortices created by linear models. The real economic vectors create
smooth spiral trajectories, which indicates necessity to employ nonlinear dynamics in economic modeling. The
basis for rotary movements are surface areas of solids of revolution of the second degree. The kinematics of solids
indicated by market shows that they also rotate in three-dimensional space. It resembles precession movements.
In economic dynamics we have at least a double rotation. What rotates are both economic vectors as well as the
solids created by them.

PACS: 89.65.Gh, 45.40.–f, 47.32.C–

1. Introduction

The article presents theoretical and empirical exem-
plifications of the rotary movement of markets. The
cobweb model and the Goodwin model of class struggle
are a theoretical justification for this type of economic
dynamics [1–5]. The latter is based on the well-known
Lotka-Volterra model in population biology [6–8]. Expe-
rience shows that markets and economy reach states of
equilibrium very rarely. Analyzing economic vectors in
three dimensions, where the coordinates are price, vol-
ume, and time, confirms that vortex motions take place
around virtual states of equilibrium. The view on sta-
bility of equilibrium stems from a long tradition of de-
scribing phenomena and economic processes by means
of linear models. It was Pereto who first become con-
cerned with basing the theory of general equilibrium on
the rule of linearity, hence apart from real motions that
lead to equilibrium, he also pinpointed contrary virtual
motions, which – even though, in his opinion, do not exist
in reality – should be investigated in order to explain the
properties of given economic states [9]. This antinome
was later explored by Samuelson, who came up with a
solution referred to as the correspondence principle [10].
In a short period of time, the spin of economic vectors in
a three-dimensional space can be described in accordance
with the rules of kinematics of a rigid body. In this case,
the states of virtual equilibrium are the lines of a trend

that change in time. In the long run, trajectories of the
vortex motion become irregular; what is more, their di-
rection of twist can change, which makes it very difficult
to describe those phenomena mathematically. The irreg-
ular rotations of stock exchange vectors resemble rotation
of a jelly-like body, such as gelatin. The lateral surface
of such a solid looks like a sleeve, on which there are
many fields of concavity and convexity. This type of ro-
tational dynamics resembles slightly a turbulent flux of
fluid. Thus, the description of the trajectory by means
of cones of regular precession, determined by the axes
of a rotating solid is only an approximation of a real dy-
namics of stock exchange valid for a short period of time.
The considerations found here constitute a further elab-
oration of our earlier research [11–12].

2. Cobweb model as a cognitive archetype of
contemporary economics

The cobweb model is one of basic economic dynamic
models and it analyzes prices and quantity dynamics on
a single market. It was almost simultaneously formulated
by Ricci, Schultz, and Tinbergen [13–15]. The name “cob-
web” was introduced by Kaldor, because that is the shape
taken by the graphic representation of prices and quan-
tity adjustment process [16]. The first systematic elab-
oration of this theory is provided by Ezekiel [17]. The
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assumption here is that consumers react to a given event
exactly at the moment of its manifestation on a market.
Producers on the other hand, react to market changes af-
ter some time, i.e. with some delay. The cobweb model
helps explain adjustment processes given a delayed re-
action of producers to the changes in prices. The fluc-
tuations result from interaction between the function of
demand dependent on current prices and the function of
supply dependent on prices expected by producers. In
this model entrepreneurs do not remember anything but
experiences from the previous period. According to a
classic assumption adjusting the supply to a new price
requires passing of some pre-fixed period, which can lead
to one of three types of prices oscillation and volume of
production: of stable amplitude, explosive and damp-
ened. A market system is stable only in the last case.
Manning develops this approach by introducing condi-
tions of stability, permanent fluctuations, and instability
for nonlinear functions of supply and demand [18].

The linear cobweb model is very often analyzed in eco-
nomic literature [19–21]. The following two equations
explain how the market works:

qd
t = D (pt) , (1)

qs
t = S (pt−1) , (2)

qd
t = qs

t , (3)
where the quantities qd

t and qs
t stand for demand and sup-

ply respectively, for a given good in period t, whereas pt

is the prices of this period. Equation (1) features a clas-
sic dependence between demand and supply: demand is
the function of current prices. According to equation (2)
there is a one-period delay on the supply’s side. The
reason for it is the fact that production of many goods
is not a momentary process, but it requires some pe-
riod, which constitutes a unit of time measurement in
the model. Producers decide on the size of production in
the current period, based on the prices from a previous
period. Relation (3) reveals a market balance in every
period t. Usually the demand is a decreasing and supply
an increasing function of prices. If both functions cross,
it is possible to determine the price of balance pe. If we
consider the relations (1)–(3) and assume that there is a
reverse function to the function of demand, the dynamics
of prices is described by the first-order differential equa-
tion:

pt = D−1 [S (pt−1)] . (4)
The phenomenon of cobweb is featured graphically in
Fig. 1. Time paths of prices are orthogonal projec-
tions of vortex trajectories. In this simple model, we
have three types of price fluctuations: the fading oscil-
lations, with constant amplitude and explosive. In any
situation, the equilibrium price pe is a reference system.
Types of fluctuations depend on the slopes of demand
and supply functions, expressed in absolute values. Since
in the supply and demand functions (1)–(2) price is an
independent variable, slopes are measured in relation to
the p axis. Let us consider in more detail the case of

Fig. 1. Graphic representation of linear cobweb model:
(a) dampened oscillations, (b) constant amplitude oscil-
lations, (c) explosive oscillations.

dampened oscillations in prices, which are shown in Fig-
ure 1(a). The slope of demand function is larger than the
slope of supply function. In the initial period t0 there oc-
curred some exogenous disturbance, such as crop failure,
which knocked the system out of equilibrium position.
As a result, the starting price p0 is higher from the equi-
librium price pe. q0 means the starting quantity. The
price p0 will make entrepreneurs manufacture produce of
quantity q1, which will constitute the supply of period
1. In order for the balance condition to be met, the de-
mand will also equal q1, which is true for the price p1.
This price sets up the supply in period 2 at a q2 level.
Such quantity will be absorbed when demand equals q2,
however, it requires price p2. With price p2 we have the
supply at q3 in period 3. It will match the demand with
the price at p3, which will set supply for the next period
at the q4 amount. Repeating this reasoning allows us to
determine prices and quantities in subsequent periods.
Over time, the difference between pt and pe decreases,
thus the time line of prices is convergent with the level
of equilibrium. The adaptation process takes place as a
result of emergence and disappearance of many moder-
ately flexible regular short-term supply curves [22]. The
intersection point of supply and demand curves E0 tem-
porarily changes its location. The process of spinning of
positions of temporary equilibrium points lasts as long as
it is subject to short-time stability (pn, qn) = En ≈ E0.
However, in practice, rotation of vector x = (pi, qi, ti)
is a constant process, since there is always some noise in
the system which disturbs equilibrium.

The cobweb model is the archetype of modern cogni-
tive theory of economics because it is a useful starting
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point for more advanced applications [23, 24]. Initially,
a natural field of its application was economics of agri-
culture, but eventually its usefulness was discovered in
modeling such phenomena as economic fluctuations or fi-
nancial markets [25, 26]. Therefore, we think that the
product (vector) x is a stock-exchange product (stock
market shares or stock market index). Prices and vol-
umes of thus understood vector x are subject to very
rapid changes.

3. Market equilibrium stability in the Walrasian
model

In order to simplify the analysis process of a flat spin
vector x, let us assume that demand d(pt) and supply
s(pt) functions are still linear functions, where the vari-
able is the price pt:

d(pt) = adpt + bd, (5)

s(pt) = aspt + bs, (6)
dp

dt
= p′(t) = cw[d(pt)− s(pt)]. (7)

In addition let us assume that: ad < 0, as > 0, bd > bs

and cw > 0. Equation (7) is referred to as the price pos-
tulate of Walras. This is a non-homogeneous differential
equation with constant coefficients. Parameter cw can be
called a parameter of rotational dynamics of the market.
A large value of this parameter indicates rapid changes
in the dynamics of price and volume of good x [27].

According to Walras a market is in economic equilib-
rium if supply and demand are even. This seemingly
static definition in fact is based on an assumption of a
dynamic character, since it postulates the existence of
economic forces, which affect such variables as price and
quantity. According to the Walrasian postulate increases
or decreases of price are expressed by the following in-
equalities:

dp

dt
= p′(t) > 0 ⇔ d(pt) > s(pt), (8)

dp

dt
= p′(t) < 0 ⇔ d(pt) < s(pt), (9)

dp

dt
= p′(t) = 0 = pe ⇔ d(pt) = s(pt). (10)

The market is in a state of equilibrium if the price of
equilibrium pe meets the dependency d (pe) = s (pe), thus
adpe + bd = aspe + bs, hence pe = bs−bd

ad−as
.

Price function in the Walrasian model is as follows:
p(t) = (p0 − pe) exp[cw(ad − as)t] + pe, (11)

whereas p(0) = p0. If p0 = pe, then function p (t) =
pe = const. If, on the other hand, the directional co-
efficients of linear function of demand and supply sat-
isfy these inequalities ad < 0, as > 0 and cw > 0, then
cw(ad − as) < 0. Consequently, we get

lim
t→∞

exp[cw(ad − as)t] = 0, (12)

which gives us

lim
t→∞

p(t) = (p0 − pe) lim
t→∞

exp[cw(ad − as)t] + pe

= pe. (13)
The boundary value of price function explains market
adaptation to the level of the temporary equilibrium [28].
In the model of a balanced market (d (pe) = s (pe)) the
above boundary relation has the following economic in-
terpretation. If the price pe deviated in a certain period
from the designated level of equilibrium p0 6= pe, then as
a result of market operation, it will automatically seek
that level. Function of prices in the Walrasian model
(11) is a heterogeneous solution of differential equations
with constant coefficients [29]:

dp

dt
= p′(t) = cw(ad − as)p(t) + cw(bd − bs) (14)

with conditions
a = cw(ad − as) < 0, (15)

b = cw(bd − bs) > 0, (16)

pe =
−b

a
. (17)

Inhomogeneous differential equation of price function
reads:

dp

dt
= p′(t) = ap(t) + b. (18)

Its solution is shown in the following sequence of equali-
ties:

p(t) =
∫

b exp(−
∫

adt)dt exp(
∫

adt)

+c exp(
∫

adt), (19)

p(t) = b

∫
exp(−at)dt exp(at) + c exp(at), (20)

p(t) =
−b

a
exp(−at) exp(at) + c exp(at), (21)

p(t) =
−b

a
+ c exp(at), (22)

p(t0) = p0, p0 = c exp(at0)− b

a
, (23)

p(t) = (p0 +
b

a
) exp a(t− t0)− b

a
. (24)

If t0 = 0 and P (0) = P0 then the solution of equation
(24) reads:

p(t) = (p0 +
bd − bs

ad − as
) exp cw(ad − as)t− bd − bs

ad − as
.(25)

4. Rotary nature of markets

Solution of homogenous differential equation of price
dp

dt
= p′(t)− ap(t) = 0, (26)

reads p(t) = p0 exp(at). It is easy to note at this point
the similarity between the solution of equation (26) and
the equation of the curve called the logarithmic spiral,
which is marked in polar coordinates (r, φ) and it is de-
fined by the equation below
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r(φ) = a exp(λφ), (27)
where: a, λ > 0, whereas λ = ctgψ, however ψ – is a con-
stant angle formed by any ray emerging from a pole of the
spiral with the tangent. If one considers the conditions
(15) - (16), equation of price function takes the form of
equation (11). Inequalities (15) - (16) are satisfied in the
vortex-spiral model. This means that regardless of how
big the difference between p0 and pe is, the boundary
equality is always satisfied lim

t→∞
p (t) = pe. Price knocked

out of equilibrium pe spins back in time to the equilib-
rium level.

Let us assume that there are two different functions
u(t) and v(t), which solve the differential equation dp

dt =
p′(t) = ap(t) + b with initial conditions

u(0) = u0, v(0) = v0 :

u(t) = (u0 − pe) exp[cw(ad − as)t] + pe, (28)

v(t) = (v0 − pe) exp[cw(ad − as)t] + pe. (29)
The boundary of the absolute difference between these
functions is equal to

lim
t→∞

|u0 − v0| exp[cw(ad − as)t] = 0. (30)

Thus, any two solutions over time get closer to each other
– their difference in the value of t decreases to zero. True
is also a monotonous (poor) estimate of this difference

|u(t)− v(t)| = |u0 − v0| exp[cw(ad − as)t] ≤ |u0 − v0|,
∀t ≥ 0, (31)

which means that the difference in the function value
u (t0) and v (t0) at the initial point determines the size
of their difference along the entire positive time-axis .
In addition one can notice that if a = cw(ad − as) >
0 (it is the so-called turbulent market case), then for
pe 6= p0 a finite boundary lim

p→∞
p(t) does not exist. Then

even a minor difference between u0 and v0 will cause
a significant rise in the absolute value |u (t)− v (t) |, if
t → ∞. In this situation, the market will reveal a very
large “turbulent” dynamics of the vector x prices [30].

5. Regular precession as a short-term
approximation of market dynamics

Fig. 2 features a modified cobweb model. If we look
at the sets of flat trajectory of vortex systems in the long
term, it is easy to associate that their shapes are orthog-
onal projections of helices wound on a variety of regu-
lar precession cones, which are formed by freely rotating
rigid bodies.

If a rigid body moves in such a way that the momen-
tary motion is always combined of two rotations around
two intersecting axes, the first of which l is fixed in
space, while the other m has a fixed position in the body,
wherein the angular velocity ω1, ω2 of these rotations is
constant in magnitude, such a rigid body motion is called
regular precession (Fig. 3). Since by assumption axes l
and m intersect at point e, so the momentary motion

Fig. 2. Spiral-vortex trajectories designated by the
kinematics of vector x in a modified cobweb model.

Fig. 3. Regular precession. Rotations of economic vec-
tor x = (pi, qi, ti), with components: price, quantity,
time, around the economic equilibrium line marked and
crossing through point e in R3

+ = P × Q × T . Real
model of vortex equilibrium of vector x.

of a rigid body is a rotation with an angular velocity
ω = ω1 + ω2 around the k axis, which passes through
the point of intersection of the axes l and m. Note that
the momentary motion of the axis m is a momentary
rotation around the axis l with angular velocity ω1 (ro-
tation of the axis m around itself is out of the question.)
Thus, the axis m rotates around the axis l with constant
angular velocity ω1. The intersection point e of both axes
is thus fixed and the angle between the axes l and m is
constant. As a result vector ω, and so axis of momentary
rotation k is at constant angles with the axes l and m.
Axis k makes a rotating cone S′ in space. The trace of k
axis in the body is also a rotation cone S′′. Thus, cones
of temporary rotations axis, constant and movable, are
cones of rotation with axes l and m.

Vector of angular acceleration ε = ω1×ω can be deter-
mined taking into consideration the fact that ω = ω1+ω2

we will easily conclude that ε = ω1×ω2 (since ω1×ω1 =
0). The vector of angular acceleration ε is of course per-
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pendicular to angular velocity vectors: ω1, ω2. Knowing
the momentary position of rotation axis and components
of angular velocity of the rigid body around this axis, we
can determine linear velocity vector of any point on the
surface of a rigid body [31]. It is clear that in short peri-
ods of time the rotating real-exchange vectors determine
the cones at R3

+ = P × Q × T . Consequently, let us
consider the vector x = (pi, qi, ti) as a rotating solid:

V = ω × r =

∣∣∣∣∣∣∣

i j k

ωp ωq ωt

p q t

∣∣∣∣∣∣∣
(32)

It is known that the vector of linear acceleration a =
a1 + a2 equals the geometric sum of precession accel-
eration vector a1 = ε × r = (ω1 + ω2) × r and axis
acceleration vector a2 = ε×V = (ω1 + ω2)×V . Based
on the above, let us imagine that a circular cone with
apex angle 2α = π

3 and the length of the forming side
wall equal to h is rolling without slipping over a hor-
izontal plane 0PQ. The axis of the cone rotates at a
constant angular velocity of precession around the ver-
tical axis 0T . It is possible to calculate both speed and
linear acceleration of points A and B for such a mov-
ing a cone on a plane. Suppose further that the tip
of the ongoing free cone, located at a point 0PQT. The
lengths of the vectors 0A and 0B have the following val-
ues rA = 1

2h(j + k
√

3), rB = 1
2h(i + 2

3j + 1
2k
√

3) re-
spectively, and the values of angular velocity vectors are
equal to ω1 = ω1k, ω = −ω1j

√
3. Thus the movement

velocity of vector A can be written as follows:

V A = ω × rA =

∣∣∣∣∣∣∣

i j k

0 −1 0
0 1

√
3

∣∣∣∣∣∣∣
ω1

√
3
h

2
= −3

2
ω1hi,

V A = −3
2
ω1h. (33)

Similarly, one can calculate the motion velocity of vector
V B :

V B = ω × rB =

∣∣∣∣∣∣∣

i j k

0 −1 0
1 3

2
1
2

√
3

∣∣∣∣∣∣∣
ω1

√
3
h

2

= ω1h(−3
4
i +

1
2
k
√

3), VB =
1
4
ω1h

√
21. (34)

The value of the angular acceleration vector of the cone
ε is:

ε = ω1 × ω =

∣∣∣∣∣∣∣

i j k

0 0 1
0 −1 0

∣∣∣∣∣∣∣
ω2

1

√
3 = ω2

1i
√

3,

ε = ω2
1

√
3. (35)

The values of linear acceleration vectors of points A and
B are respectively:

a1A = ε× rA =

∣∣∣∣∣∣∣

i j k

0 −1 0
0 1

√
3

∣∣∣∣∣∣∣
ω2

1

√
3
h

2

=
1
2
ω2

1h(−3j + k
√

3), (36)

a2A = ω × V A =

∣∣∣∣∣∣∣

i j k

0 −1 0
−1 0 0

∣∣∣∣∣∣∣
ω2

1

√
3
3h

2

= −3
2
ω2

1h(i + k

√
3

2
), (37)

aA = a1A + a2A = −ω2
1l(

3
2
j + k

√
3), (38)

a1B = ε× rB =

∣∣∣∣∣∣∣

i j k

1 0 0
1 3

2

√
3

2

∣∣∣∣∣∣∣
ω2

1

√
3
h

2

=
3
4
ω2

1h(−j + k
√

3), (39)

a2B = ε× V B =

∣∣∣∣∣∣∣

i j k

0 −1 0
−3
4 0

√
3

2

∣∣∣∣∣∣∣
ω2

1h
√

3

=
−3
2

ω2
1h(i + k

√
3

2
), (40)

aB = a1B + a2B = −ω2
1l(

3
2
i + j

3
4
). (41)

6. Market vortices in practice and their
theoretical description in economics

Flat vortices can be seen in those charts, that feature
correlations between the values of stock indices and their
corresponding values of the volumes. Spiral trajectories
of this type are shown in Figure 4. Charts volumes and
index values are plotted on two time scales: yearly for the
DJIA and monthly for the NIKKEI 225. In these periods
indices made both a clockwise and anticlockwise spiral.
Fig. 5 shows a vortex trajectory in R3

+ = P × Q × T
set by vector x (of WIG20 index) of the following com-
ponents (pi, qi, ti). At present a working hypothesis is
being tested that vortex trajectories form a logarithmic
spiral.

Such kind of dynamics has a binary justification in
the theory of economics. It can be a result of trajectory
rotation around the point of the Cournot-Nash equilib-
rium in the triopoly model, which takes place along the
ever-tightening spiral [12]. The potential swelling and
shrinking of the spiral can be attributed to exogenous
and stochastic factors. Another way to theoretically de-
scribe this topic is to use the class struggle model by
Goodwin [32–34]. In this sense, capitalism has always
been in constant lap motion, which results from antago-
nistic relations of production.
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Fig. 4. Vortex trajectories of DJIA NYSE and
NIKKEI 225 indexes.

Fig. 5. Three-dimensional vortex trajectory of WIG20
index from 14.04.1994 to 28.11.2002, designating side
surfaces of rotating bodies (cones).

7. Conclusions

The easy-to-calculate values of velocity, as well as the
linear accelerations of any points A and B situated at the
surface of the cone of a regular precession determined by
the axis of rotation of a rotating solid can be used only
when the vortex trajectory marks the cone at R3

+, and
such situations take place only in short periods of time.
Then, the surfaces determined by the vortex trajectory
are close to the surface of cones. In the long periods of
time, the rotating vectors determine very irregular vor-
tex trajectories, which are of various directions of twist,
which gravely complicates any attempt at describing the
vortex motion, alongside of which the x vector is go-
ing to move in the future. The chaotic and long-lasting
character of vortex trajectories shows the kind of motion
that can be named an irregular topological precession, of
course an irregular precession of a non-solid. As an ex-
ample for such a body one can imagine a rotating piece

of freezing in time gelatin. The lateral surface of a solid,
which results from a chaotic and supposedly smooth ro-
tation of a “gelatin-like” x vector, has a shape of an ir-
regular “sleeve” of stock exchange and it is full of various
areas of concavity and convexity. The complexity of the
above-presented dynamics of chaotic rotation of the x
vector seems to be more complicated than the problem
of stability of our Solar System, whose solution Poincaré
dared to find [35]. Exploring the complexity of motion
he understood that he had made a serious mistake in his
paper on the celestial mechanics that was awarded by
the king of Sweden and Norway, Oscar II. The mistake
was soon to be corrected. Therefore, the notion of chaos
was better understood and the very process of its better
description lasts until now.
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