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Credit risk models used in banks are based on probability models for occurrence of default. A vast class of the
models used in practice (e.g., Credit Metrics) is based on the notion of intensity. In 1997 Jarrow applied Markov
chain approach to analyze intensities. The key problem that arises is the selection of appropriate estimators.
Within the Markov approach among the most frequently used estimators of a migration matrix are cohort and
duration estimators. Migration matrices can also be obtained with help of statistical longitudinal models (GLMM)
in which states (rating classes) in discrete time points are regarded as matched pairs. In this paper we compare
Markov chain models and GLMM models and the influence of their application on bank portfolio evaluation.
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1. Introduction

In the late 80-ties measures were undertaken to or-
ganize both bank proceedings and methods of evaluating
resulting financial risk. The prevailing aim to achieve the
sustainable growth keeping up with the assumed finan-
cial performance was reached with help of mathematical
models. These models allowing correct risk evaluation
became an indispensible tool after the financial crisis of
2008.

At the beginning the changes in values of investigated
loans were modeled in frames of the Merton theory. In
the 90 - ties more attention was put to rating systems
measuring credit rating and the process of changing rat-
ing in time. For the description of these changes intensity
λ was used, namely:

P (default ∈ [t, t + ∆t] |Ht ) ≈ λ(t)∆t,

where Ht denotes historical information [1].
The easiest way to describe intensities is to consider

a finite state Markov space [2-3]. The methods of eval-
uating intensities were based on the observed migration
matrix. There are several methods to estimate migration
matrices. The most popular frequency methods are based
on directly observed historical performance. The other
approach is offered by statistical methods of generalized
longitudinal models GLMM.

2. Migration matrices and their application

In this paper we try to compare influence of various
migration matrices models on risk estimation. At the
moment there are four models used in practice: Merton’ s
model, CreditRisk+, CreditMetrics, and CreditPortfolio
View. The last two are based on migration matrices.

In developed countries estimators of migration matri-
ces are published by external rating agencies, e.g., S&P
[4], Moody’s [5-6]. The data is then used by banks to
model probability of default. Unfortunately, no such data
is available for Poland, mainly due to insufficient num-
ber of rated agents. Therefore banks rely on their own
internal models. Unfortunately, the notion of default has
not yet been defined and the available data concerning
migration to default is not reliable as agents try to hide
their true financial situation when in danger of default.
Moreover internal ratings are constructed with a method
called Point-in-Time, i.e., for a given economic situation
of the country.

Due to the above remarks we decided to base our re-
search on generated data. Apparently this approach is
biased and should not be applied to model evaluation in
terms of goodness-of-fit but can be used to discover if the
differences between the models are considerable.

3. Markov chain approach

We will use the rating consisting of 8 states, proposed
in [5], and described in details in [7] and [8]. In litera-
ture devoted to the subject of credit rating it is assumed
that rating changes can be described with help of a fi-
nite homogenous Markov chain with the transition ma-
trix P = [pij ] based on historical data. The assumption
of time homogeneity is usually false, mainly due to ex-
ternal economic factors such as cycles of economy [9–11].
Statistical tests for time invariance (see, e.g., [12]) re-
quire a sufficiently large sample for each matrix entry.
This cannot be achieved as the off-diagonal events are
scarce, hence the elements on the diagonal are estimated
with high precision while the entries far away from the
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diagonal are estimated with low precision. Special atten-
tion should be paid to entries equal to zero, which mean
no transition. This is not desirable. Credit migration
matrices are diagonally dominant, nonnegative, stochas-
tic, their largest eigenvalue is equal to 1, and they have
an absorbing state (default).

There are several methods for estimating migration
matrices for count data. The most frequently used
are the cohort method and two variants of duration
methods – parametric (imposing time homogeneity) and
non-parametric (relaxing time homogeneity), known as
Nelson-Aalen-Johansen estimator. In this paper we will
show that migration matrices can also be obtained with
help of longitudinal models (GLMM). The advantage of
such an approach is that it allows to incorporate eco-
nomic indices thus making the estimation more adjust to
given economic situation.

3.1. Cohort method

Let nij be the number of agents rating i at t–1 and
rating j at t, ∆t = 1. The estimated transition probabil-
ity of migrating from i to j is:

pij =
nij∑

j

nij
. (1)

Hence the probability of migrating from i to j is the pro-
portion of the number nij of all agents that migrated
from i to j, to all agents whose rating was i at t–1, i.e.,∑
j

nij = Ni.

The cohort method [11, 13, 14], which became the in-
dustry standard for count data, has a drawback. Any
rating change activity which occurs within the period ∆t
is ignored.

3.2. Migration matrices for T periods

In [15] the following estimator of transition probabili-
ties within T periods was introduced

pij =
Nij

Ni
=

T∑
t=1

nij(t)

T∑
t=1

Ni(t)
. (2)

In the sequel, the above defined estimator will be called
Plug-in, and the transition matrix obtained by (2) will
be denoted by PI.

3.3. Duration methods

Unlike the cohort method, the duration methods use
full rating history. If the assumption of time homogeneity
is imposed, transition probabilities can be described via
a generator or an intensity matrix Λ [14, 16]. Transition
matrix P (t), for an arbitrary t ≥ 0, can be written as

P (t) = exp(Λ(t)) = I + tΛ(t) + t2
Λ2(t)

2!

+t3
Λ3(t)

3!
+ ..., (3)

t ≥ 0, where the entries of Λ satisfy λij ≥ 0 for i 6= j,

and λii = − ∑
j 6=i

λij . The estimate of Λ is given by λij =

nij(T )
T∫
0

Yi(s)ds

, where Yi(s) is the number of agents rating i at

time s, and nij(T ) is the total number of transitions over
the period T from i to j for i 6= j.

For the time-inhomogeneous case, the Nelson-Aalen-
Johansen estimator can be used. The transition ma-
trix for the period s to t is computed as: P (s, t) =
m∏

i=1

(
I + ∆Â(Ti)

)
. The off-diagonal elements of ∆Â ma-

trix are given by

ajk =
∆Njk(Ti)

Yj(Ti)
, (4)

where Ti is the jump time in the interval (s, t], Yj(Ti)
is the number of agents in the rating class j at a time
just prior to t, and ∆Njk(Ti) is the number of transi-
tions from j to k in Ti, m is the number of days with at
least one mobility [14, 16]. The raw sum is equal to zero.

4. Migration matrices and GLM

From the statistical viewpoint the transition proba-
bilities pij = P (Yt = j |Yt−1 = i ) can be regarded as
matched pairs. Therefore it seems reasonable to apply
longitudinal GLMM models. These models are gener-
alizations of generalized linear models GLM [18]. In
our work we have chosen two types of GLMM models:
Marginal Models and Transitional Models.

4.1. Marginal GLM

Marginal models belong to a class of generalized linear
models, for which both expectation and variance is
defined independently. Let the probability distribution
f(·) be in the class of one parameter exponential family
[18, 19], let µij = b′(θij) be called the marginal average
and let the expectation E(Yij |µij ) for a given marginal
average µij depend on exogenous variables Xij via a
copula g(·): g(µij) = ηij = Xijβ. Let the variance
V ar(Yij) depend on the value of marginal average via
a given function ν: V ar(Yij) = ν(µij)ϕ. The class of
models defined above is called marginal models [18].
Here we have chosen a marginal model consisting of
the average and variance described above to produce
migration matrix with 8 states and one absorbing in it.
The average can be described in terms of an equation
with exogenous variables depending on rating classes:

log {E(Yij)} = αi · ratingt
i + βj · ratingt−1

j

+θij · factorij + τij · δij ,

where

δij =

{
1 for i ≤ j

0 for i > j
.

For the likelihood function the Pois-
son distribution was taken. We have
f(Yij |µij) = exp[Yij log(µij)− µij − log(Γ(Yij + 1))],
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with the copula function g(·) = log(·) and the parameter
φ = 1.

4.2. Transitional GLM models

In the transitional models all the assumptions con-
cerning generalized linear models are valid except that
density function f(Yij) is conditional and depends on
the past as well as on additional external variables
Xij [18, 19]. We assume that the past is given as
Hij = {Yi1, Yi2, ..., Yi,j−1}, then the f(Yij |Hij ) be-
longs to the class of one parameter exponential family.
The conditional average can be represented in the form:

g (E (Yij |Hij )) = Xijβ +
s∑

r=1
αrfr(Hij), for some copula

g(·) and transforming functions f(·).
For the need of the presented paper and the aim of

migration matrices modeling (with 8 states and one ab-
sorbing in it), we have chosen equations with identity
transforming functions and exogenous variables depend-
ing on rating.

The negative binomial distribution was used to con-
struct the likelihood function:

f(Yij) = Yij log(kµij)− (Yij) log(1 + kµij)

+ log
(

Γ(Yij + 1/k)
Γ(1/k)Γ(Yij + 1)

)
,

where V ar(Yij) = µij + kµ2
ij , g(·) = log(·), and φ = 1.

5. Generators of Markov chains and their
application

Whatever estimation method is used the shortest time
interval for estimating a migration matrix is one year (one
period). The reason is that for shorter periods no enough
transitions is observed to get reliable results. In practice,
however, one often needs to use migration matrices for
shorter periods than one year. This can be done provided
that for a transition matrix P its generator Q such that
P = exp(Q) is obtained. Then, the formula

P (t) = exp(tQ) = I + tQ +
(tQ)2

2!
+

(tQ)3

3!
+ ... (5)

gives transition matrix P (t) for an arbitrary t ≥ 0. In
other words finding a generator Q for a one period matrix
P , i. e., for a discrete time matrix, allows to obtain a
continuous time transition matrix [16].
Theorem 1 [16]
Let P be an N xN transition matrix and let S =

max
{

(a− 1)2 + b2 ; where a + ib, (a, b ∈ R) is an eigen-
value of P} . Suppose that S < 1. Then the series

Q̃ = (P − I)− (P − I)2

2
+

(P − I)3

3

− (P − I)4

4
+ ... (6)

converges geometrically quickly and gives rise to an N×N
matrix Q̃ such that exp(Q̃) = P.

In our examples eigenvalues were real and the largest
was equal to 1. Therefore we were able to find generators
of matrices considered in our paper. One has to mention
that in [16] and [17] a number of theorems and criteri-
ons was given for existence and uniqueness of transition
matrix generators.
Theorem 2 [16]
Let P be a transition matrix and let pii > 0.5 for

each i. Then S < 1, i.e., the series (6) is convergent.
The off-diagonal entries may be negative. This requires

amendment, e.g., defined in [16]. Once we have obtained
Q̃ with possibly some negative off-diagonal entries, we
can define a new matrix Q by setting

qij =





max(q̃ij , 0), for j 6= i ,

q̃ii +
∑
j 6=i

min(q̃ij , 0), fori = j. (7)

The new matrix will have nonnegative off-diagonal en-
tries, will have row-sums 0 but it will no longer satisfy
exp(Q) = P exactly. Still after the corrections are made
we compute transition matrix P , for arbitrary t ≥ 0 using
formula (5).

6. Data description and results

The comparison of migration matrices was done based
on simulated data obtained by a migration matrix given
in Table I [5]; in this simulation 2000 clients were gener-
ated with their history for 5 periods. The data was then
used to calculate migration matrices∗.

First, one year transition matrices were calculated
based on simulated data. These matrices were then used
to obtain migration matrices estimated with described
methods: cohort for T periods (PI), duration (paramet-
ric (D) and non-parametric (AN)), marginal GLM model
(M GLM) and transitional GLM model (T GLM). Also
the average of one year migration matrices was calculated
(AR). Standard errors were calculated for entries of the
matrices with boot-strap method [20] (matrices with B
at the end) and generators for each matrix were deter-
mined with correction introduced in [16]. Note that tran-
sition matrices for duration methods are already contin-
uous time matrices. Then transition matrices obtained
with generators were calculated (denoted by G) to en-
able probability estimates in an arbitrary moment. All
together 13 matrices were considered.

In order to obtain the one year Aalen-Nelson matrix,
first we calculate its generator, then take its logarithm,
next we divide the matrix by four and compute the one
year AN matrix as the exponent of the result following
formulas (5) and (6). The obtained matrix (Table II, III
and IV) was then compared with other matrices.

∗ Application of real life data requires extra treatment which is
beyond the scope of the paper.



Examples of Migration Matrices Models. . . B-43

7. Comparison of migration matrices

In [13] several examples of measures used to compare
migration matrices were given and discussed. The mea-
sures based on differences between entries of N ×N mi-
gration matrices P = [pij ] and P̂ = [p̂ij ] are

MDEV (P, P̂ ) =

N∑
i=1

N∑
j=1

|pij − p̂ij |

2N
, (8)

MEuc(P, P̂ ) =
√

N − 1
N

√√√√
N∑

i=1

N∑

j=1

(pij − p̂ij)
2
. (9)

TABLE I
Migration matrix published by Moody’s from [5]

Aaa Aa A Baa Ba B Caa_C D
Aaa 0.8933 0.1018 0.0036 0.0012
Aa 0.0086 0.8781 0.1065 0.0029 0.0019 0.0019
A 0.0153 0.9027 0.0658 0.0126 0.0027 0.0009
Baa 0.0052 0.0628 0.8356 0.0817 0.0126 0.0021
Ba 0.00 0.0029 0.0391 0.8418 0.1035 0.0039 0.0078
B 0.00 0.0019 0.0038 0.0596 0.8221 0.0298 0.0817

Caa_C 0.0138 0.0276 0.0741 0.6034 0.28
D 1

TABLE II
Transitional GLM migration matrix

Aaa Aa A Baa Ba B Caa_C D
Aaa 0.8559 0.0975 0.0276 0 0.0188 0 0 0
Aa 0.038 0.8557 0.072 0 0.0213 0 0 0.0128
A 0 0.0211 0.8943 0.0376 0.0256 0.0147 0 0.0065
Baa 0 0.024 0.0608 0.8019 0.0631 0.0499 0 0
Ba 0.0067 0 0.0121 0.0533 0.7939 0.0627 0.0332 0.0377
B 0 0.0067 0.0167 0.0289 0.0484 0.7731 0.0602 0.0656

Caa_C 0 0 0 0.0413 0.1224 0.0157 0.4235 0.2553
D 0 0 0 0 0 0 0 1

TABLE III
Marginal GLM migration matrix

Aaa Aa A Baa Ba B Caa_C D
Aaa 0.8889 0.1015 0.0030 0.0022 0.0011 0.0004 0 0.0025
Aa 0.0085 0.8764 0.1071 0.0035 0.0011 0.0004 0 0.0026
A 0.0004 0.0147 0.9022 0.0740 0.0043 0.0005 0 0.0034
Baa 0.0001 0.0045 0.0530 0.8338 0.0932 0.0046 0.0002 0.0102
Ba 0.0003 0.0003 0.0118 0.0285 0.8362 0.1005 0.0016 0.0204
B 0.0010 0.0009 0.0007 0.0111 0.0624 0.8345 0.0307 0.0584

Caa_C 0.0047 0.0045 0.0035 0.0011 0.0312 0.0723 0.6049 0.2774
D 0 0 0 0 0 0 0 1.0000
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TABLE IV
One year Aalen-Nelson migration matrix

Aaa Aa A Baa Ba B Caa_C D
Aaa 0.9037 0.0769 0.0174 0.0008 0.0009 0 0 0
Aa 0.0064 0.8949 0.0805 0.0119 0.0041 0.0005 0 0.0013
A 0.0002 0.0125 0.9177 0.0466 0.0171 0.0048 0.0003 0.0005
Baa 0.0001 0.0048 0.0448 0.8724 0.0549 0.0179 0.0012 0.0035
Ba 0.0006 0.0008 0.0061 0.0243 0.8807 0.0606 0.0053 0.0211
B 0.0001 0.0006 0.0018 0.0053 0.0391 0.8657 0.0114 0.0756

Caa_C 0 0.0002 0.0015 0.0061 0.0169 0.0297 0.7801 0.165
D 0 0 0 0 0 0 0 1

The measures defined by (8) and (9) will be denoted by
L1 and L2 respectively. We propose also a metric based
on maximal difference between entries of matrices

Mmax(P, P̂ ) = max
ij

|pij − p̂ij | .

In [13] the authors defined a new metric based on SVD,
namely on the average of singular values of the so called
mobility matrix P̃ = P − I

MSV D(P ) =

N∑
i=1

√
λi(P̃T P̃ )

N
, (10)

where λi are eigenvalues of P̃T P̃ . The metric based on
singular values allows to measure the mobility encapsu-
lated by transition matrix. For matrix comparison we
define

MSV D(P, P̂ ) =
∣∣∣MSV D(P )−MSV D(P̂ )

∣∣∣ (11)

In the rest of this paper we compare estimated transi-
tion matrices and their performance. The first compari-
son is based on measures between matrices, the second on
business performance. To compare matrices we calculate
their distance to PI matrix. We calculate also distances
between cohort matrices and duration matrices and their
generators as well as between GLM matrices and Markov
chain matrices.

TABLE V
Comparison of discrete time and continuous time
migration matrices

PI AR T GLM
PI G AR G T GLMG

L1 0.0010 0.0011 0.0046
L2 0.0016 0.0017 0.0063
max 0.0027 0.0028 0.0151
SVD 0.0002 0.0003 0.0003

The comparison of distances between matrices and
their continuous time counterparts obtained via gener-
ators confirms the fact that these matrices almost do not
differ (see Table V).

The differences encapsulated in Table VI indicate that
it really matters if the matrix was calculated in a straight-
forward way or by a bootstrap method.

TABLE VI
Comparison of bootstrap generated
matrices and ordinary count data
matrices

PI AN
PI B AN B

L1 0.0309 0.0584
L2 0.0454 0.0867
max 0.0742 0.2069
SVD 0.0354 0.1549

TABLE VII
Examples of matrices with large mi-
gration differences

AN D
AN B AN B

L1 0.0371 0.0204
L2 0.0543 0.0361
max 0.2132 0.2492
SVD 0.1795 0.2133

In Table VIII distances calculated between duration
matrices: parametric (D) and nonparametric (AN), con-
firm the conclusion of [13] that these matrices encapsu-
late similar migration power. The same conclusion holds
true for average (AR) and PI matrices, which addition-
ally have very similar entries, so in fact they do not differ
much.

TABLE VIII
Examples of matrices with similar migration
impact

AN D AR M GLM
PI B AN PI PI

L1 0.03 0.0467 0.0021 0.0129
L2 0.0408 0.06 0.0049 0.0146
max 0.0651 0.1215 0.0109 0.0233
SVD 0.0257 0.05 0.0009 0.0003
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TABLE IX
Distances between PI matrix and other matrices

AN B M GLM T GLM
PI B PI B PI B

L1 0.0635 0.0358 0.0523
L2 0.1016 0.0467 0.0691
max 0.2127 0.0738 0.1439
SVD 0.1293 0.0357 0.0103

TABLE X
Comparison of Markov chain and GLM matrices

AN B AN B PI B PI B
T GLM M GLM M GLM T GLM

L1 0.0886 0.0531 0.0358 0.0523
L2 0.1416 0.0796 0.0467 0.0691
max 0.3566 0.2139 0.0738 0.1439
SVD 0.1190 0.1650 0.0357 0.0103

The comparison of matrices based on measures does
not necessarily reflect their performance (no metric can
capture the differences in the last column of migration
matrix which describes probability of migration to de-
fault). Therefore, after calculating generators of matri-
ces, we estimate transition probabilities as the function
of time.

For practical application the most important are prob-
abilities of migration to default. In Figs. 1 and 2 prob-
abilities of migration to default from Ba and Caa_C in
the function of time are shown. Apart from the mean
value, the confidence intervals were estimated with the
bootstrap method. Large values of default probabilities
result from the fact that the models are extrapolated to
long time horizon. In practice, portfolios from “banking
book” are monitored over the horizon up to 10 years.

As can be seen models give different results. Partic-
ularly large differences exist for portfolios in the lower
rating grade such as the class Caa_C. The probabilities
of migration obtained from models are the input informa-
tion to calculate the economic capital and thus directly
translate into financial results. The differences observed
in simulations may result in significant changes (up to
10%) in the costs of maintenance the portfolios. The
problem out of the scope of this article is to incorporate
the value of migration into liquidity risk models.

It is not only the average value of migration, but also
the precision of their estimation. Noticeable differences
depend on the probability distributions of default for the
simulated data. In practice the situation is more compli-
cated because the distribution of migration rates change
over time and depend on many factors. Models based
on Markov chain approach do not allow incorporating
exogenous variables into the models. The practice how-
ever requires considering economic factors in credit risk
modeling. This is possible within the GLMM approach.

Fig. 1. Comparison of AN and Plug-in models with re-
spect to the probability of migration to default (D) from
Ba / Caa_C.

Fig. 2. Comparison of T GLM and Plug-models with
respect to the probability of migration to default (D)
from Ba / Caa_C.

For periods of economic stability such as in 2006-2008,
the more appropriate were the models of Aalen, in pe-
riods when there were rapid changes such as the crisis
of 2008/2009 better results could be obtained in GLMM
models. Therefore additional studies are required to de-
termine which internal and external factors should be
included in the models.

8. Summary

Application of migration matrices to risk estimation
becomes more and more popular. There are several meth-
ods of estimating migration matrices. In our paper we
have presented these methods and compared obtained
matrices. The comparison of matrices based on distance
measures does not reflect their business performance be-
cause no metric can capture the differences in the last
column of migration matrix which describes probability
of migration to default. From the viewpoint of applica-
tions much better results can be obtained with measures
based on estimation of convergence to default. Such mea-
sures involve basic properties of absorbing Markov chains
and will be investigated in our next paper.
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