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Multifractal Background Noise of Monofractal Signals
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We investigate the presence of multifractal residual background effect for monofractal signals which appears
due to the finite length of the signals and (or) due to the constant long memory the signals reveal. This
phenomenon is investigated numerically within the multifractal detrended fluctuation analysis (MF-DFA) for
artificially generated time series. Next, the analytical formulas enabling to describe the multifractal content
in such signals are provided. Final results are shown in the frequently used generalized Hurst exponent h(q)
multifractal scenario as a function of time series length L and the autocorrelation scaling exponent value γ. The
obtained results may be significant in any practical application of multifractality, including financial data analysis,
because the "true" multifractal effect should be clearly separated from the so called "multifractal noise" resulting
from the finite data length. Examples from finance in this context are given. The provided formulas may help to
decide whether one deals with the signal of real multifractal origin or not and make further step in analysis of the
so called spurious or corrupted multifractality discussed in literature.

PACS: 05.45.Tp, 89.75.Da, 05.40.–a, 89.75.–k, 89.65.Gh

Multifractality [1–7] is the property of complex and
composite systems that has been attracting more and
more attention in recent years in many areas (see e.g.
[8–14]). The practical fruits of multifractality are not
precisely known yet but in some fields including finance
interesting features of this phenomenon were shown (see
e.g.[15–24]) that rise hopes for future applications. Since
the paper by Kantelhardt et.al. [25] we know that mul-
tifractality may result not only from long-range correla-
tions but also from fat tails in probability distributions
(PDF) of investigated data even if no memory in data
is included [26, 27]. Normally, one expects multifractal-
ity in time series as a result of different autocorrelations
appearing at various time scales. This kind of multifrac-
tality is most interesting from the practical point of view.
However, we always deal in practise with finite samples
of data, collected in time series of given length. In such
a case multifractality may appear even if no difference in
autocorrelation properties exists for various time scales.
It is because large fluctuations cannot be detected in fi-
nite samples of data with long memory as frequent as
small fluctuations – mainly due to the insufficient data
statistics. In other words, large fluctuations are not able
to be formed in small samples of data, contrary to small
fluctuations. Therefore, one gets in the case of shorter
time series the apparent multifractal property which itself
is not programmed to be multifractal in a sense of differ-
ent autocorrelation properties at various scales. The lat-
ter multifractality, related to variety of autocorrelations,
is more substantial and has to be somehow separated
from the former one, which we shall call "the multifrac-
tal background" or "residual noise" further on.

This residual finite size effects should be distinguished
also from the so called spurious and corrupted multifrac-
tality [28, 29], where the given data series are contam-
inated by various effects like noise, short-term memory,
periodicity in signal, etc., changing the shape of multi-

fractal profile. The latter effects will affect multifractality
for all lengths of data L, while finite size effects disappear
if L →∞.

The preliminary analysis of this problem had already
been made (see e.g. [26–29]). Our goal is to describe the
expected level of multifractal background existing due
to finite-size effects quantitatively, in terms of general-
ized Hurst exponents [25] for time series with and with-
out memory, induced by the explicit form of autocorrela-
tions in data. Our approach is based on Fourier filtering
method (FFM) [30], directly shaping the artificial data
with autocorrelation exponent γ.

We use the multifractal detrended fluctuation analysis
(MF-DFA) [4, 25] as the commonly accepted technique to
find multifractal properties of time series. This method
is described elsewhere (see e.g. [4, 23–25]) so we will not
recall it in details here. To keep the standard notation
we will note the q-th moment of fluctuation (called also
q-deformed fluctuation) of the time series signal around
its local trend (assumed linear in our approach) in a time
window of size τ for arbitrary q ∈ R as Fq(τ). Usually,
the multifractal properties are presented in the Hölder
language as the multifractal spectrum f(α) [7]. Equiva-
lently, in the Hurst language, one can consider the spread
of generalized Hurst exponents h(q) [25], calculated for
fluctuations Fq(τ) within MF-DFA from the power law:

Fq(τ) ∼ τh(q) (1)
Both descriptions are linked together via relations [31, 32]

α = h(q) + qh′(q), f(α) = q(α− h(q)) + 1 (2)
We will deal in this article only with the generalized
Hurst exponent description of multifractality. Neverthe-
less, our results can be easy translated into Hölder lan-
guage with the use of Eq.(2).

Our aim is to evaluate the multifractal effect of finite
artificial signals of various lengths for the given constant
persistency level, i.e. persistency not changing with the
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time scale. Such signals are built by us within FFM
[30]. The level of autocorrelations is directly modulated
by the proper choice of scaling exponent γ responsible
for the magnitude of autocorrelation function C(τ). The
autocorrelation function C(τ) satisfies for stationary se-
ries with long memory the known power law:

C(τ) ' 〈∆x(t)∆x(t + τ)〉 ∼ τ−γ (3)
where ∆x(t) = x(t + 1)− x(t) are increments of discrete
time series, τ is the time-lag between observations and
the average 〈〉 is taken over all data in series.

The γ scaling exponent may be linked to the Hurst ex-
ponent H [33] by the formula [34]:

γ = 2− 2H (4)
In the quantitative analysis of residual multifractality left
in monofractal finite signals, we concerned the ensembles
of numerically generated time series of length L = 2n,
(n = 9, 10, . . . , 20) with the pre-assumed autocorrelation
exponent value γ = 0.1, 0.2, . . . , 0.9, 1.0, each containing
102 independent realizations. Thus, the spread of γ expo-
nents covers the range 1/2 ≤ H < 1. The every obtained
quantity has been averaged over such statistical ensemble
produced for the L and γ values as input parameters.

First, we examined the FFM procedure for time se-
ries generation, in order to check its accuracy towards
replication of the pre-assumed autocorrelation properties
coming out from the particular choice of γ exponent as
input. Fig. 1 demonstrates its efficiency. It is seen that
the power law in Eq.(3) is very well reproduced. More-
over, a coincidence between input and output γ’s is also
satisfactory. The length of generated data-samples was
chosen as powers of 2 to improve performance of the fast
Fourier transform algorithm.

Fig. 1. Efficiency of FFM for replication of autocorre-
lation properties in time series. The examples for input
values γ = 0.2, 0.5, 0.8 are shown in log-log scale for
the generated data of length L = 220. The solid lines
present the fit to the desired power law dependence of
Eq.(3), while error-bars show 1σ standard deviation fol-
lowing from the considered statistics of 102 independent
realizations. The output γ values from the fit are found
γout = 0.203(±0.009), 0.498(±0.012), 0.782(±0.054) re-
spectively.

Fig. 2. Scaling properties of q-deformed fluctuations
within MF-DFA. Results are presented for two differ-
ent lengths of time series L = 212, 220, three au-
tocorrelation parameters γ = 0.1, 0.5, 0.9 and q =
−15,−10,−5, 0, +5, +10, +15 (from bottom to top). All
plots confirm the proposed scaling range from τ = 10
till τ = L/4.

The next problem we had to examine was the perfor-
mance of MF-DFA technique which strictly depends on
the power law scaling between q− deformed fluctuations
Fq(τ) and the window size τ (see Eq.(1)). An exact ex-
traction of the generalized Hurst exponent h(q) is then
possible only for well determined scaling range in the fit-
ting procedure log Fq(τ) vs log τ . Fig. 2 clearly shows
the expected power law dependence for various lengths
L of the signal and for different values of deformation
parameter q uniformly distributed in the range from −15
to +15. These plots justify the scaling range from τ = 10
till τ = L/4, chosen by us further on.

To determine quantitatively the amount of multifrac-
tal residual noise present in given time series, the edge
values of h(q) function were investigated for them. Let
us introduce the new parameter ∆h defined as the differ-
ence between the two asymptotic limits:

∆h = lim
q→−∞

h(q)− lim
q→∞

h(q) (5)

and assume for numerical reasons that such asymptotic
limits are reached already at q = ±15. Such assumption
is justified in Fig. 3, where plots for h(q) are shown for
L = 212, 220 and for γ = 0.1, , 0.5, , 0.9 respectively.

Generally, we may expect that ∆h is the unknown
function of L and γ. The form of ∆h(L, γ) dependence is
thus a crucial problem. To simplify it, one may consider
the case γ = const for a moment, e.g. γ = 1 (H = 1/2)
corresponding to uncorrelated data. Fig. 4 shows the
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Fig. 3. Generalized Hurst exponent for monofractal
signals generated within FFM with various autocorrela-
tion properties. Two cases, for L = 212 and L = 220 are
shown with different autocorrelation levels. Error bars
correspond to statistics (1σ) of 102 generated series.

edge characteristics of h(q) calculated for two distinct
series of length L = 212, 220, generated with the autocor-
relation exponent γ and then shuffled. The dependence
on γ is evidently absent proving that shuffling procedure
was effective enough, while the dependence ∆h(±15) on
L is still kept and obvious.

The detailed analysis of the latter relationship is re-
vealed in Fig. 5 collecting results for various data lengths.
Astonishingly, this figure suggests a power law depen-
dence between ∆h1 ≡ ∆h(γ = 1) and L

∆h1(L) = C1L
−η1 (6)

where C1 and η1 are constant.
The knowledge of 95% confidence level for this rela-

tion is crucial in practise. This level means that any
result measured above the particular value has probabil-
ity less than 5%. To obtain this confidence level one has
to correct C1 and η1 parameters by the corresponding
quantiles calculated from the 1σ uncertainties σC1 , ση1

of the fit and from the standard deviation S1 resulting
from the series statistics∗:

∆h95%
1 (L) = C1 exp(f(σC1 + S1))L−η1+fση1 (7)

where f = 1.65 is the respective factor for the particular
95% confidence level.

∗ exponential dependence in this formula comes from the uncer-
tainty of regression line fit in logarithmic scale

Fig. 4. Edge values of the generalized Hurst exponents
h(q) for two different lengths of time series L = 212, 220

constructed with long memory present (γ < 1) and then
shuffled to kill this memory. Dependence on the data
length is readable.

Let us take now a closer look at the case of autocor-
related (0 ≤ γ < 1) finite signals. The edge values for
h(±15) versus the autocorrelation exponent value γ were
investigated again, keeping L fixed. The examples of
this dependence for L = 212 and L = 220 are shown in
Fig. 6. We found that cases for other lengths (not shown)
look similarly and indicate the excellent linear, decreas-
ing function of h(±15) versus γ in the whole range of
autocorrelation exponent. Thus one gets:

∆h(γ, L) = A(L)γ + B(L) (8)
where the linear coefficients A(L) and B(L) depend

on L only. They can be further specified with the use
of boundary relations, i.e. the form of ∆h1(L) and
∆h0(L) ≡ ∆h(γ = 0, L) functions.

The first boundary condition, i.e. ∆h1(L), was al-
ready specified in Eq.(6). The profile of the second one
(∆h0(L)) can be deduced from Figs.6,7. The extrapo-
lation of the fitting lines h(±15) versus γ to the point
γ → 0 is needed because the case γ = 0 is not accessi-
ble directly in FFM (see Fig. 6). Their results give the
collection of ∆h(0, L) values, plotted against the length
of time series in Fig. 7. This can be done for the central
values as well as for the data satisfying 95% confidence
level. It is seen from Fig. 7 that for fully autocorrelated
time series (γ → 0) ∆h0(L) is represented again by the
power law:

∆h(0, L) = C0L
−η0 (9)

with some constants C0 and η0 to be determined from
the fit.
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Fig. 5. Spread ∆h1 of generalized Hurst exponent ver-
sus length of data drawn in log-log scale for the signal
with no memory. Power-law dependence between ∆h
and the data length is visible. Data point correspond-
ing to L = 29 (marked as triangle) is slightly above the
fitting line due to insufficient statistics for short signal.
Therefore, this point has been neglected during fitting
procedure. Results of the fit are C1 = 0.603, η1 = 0.175
for the central values and C95%

1 = 0.631, η95%
1 = 0.171

for 95% confidence level. The latter one is marked as
the top line..

Linking the shape of boundary conditions given in
Eqs.(6) and (9) with the general linear dependence in
Eq.(8), one arrives with the final formula for ∆h(γ, L):

∆h(γ, L) = C1L
−η1γ + C0L

−η0(1− γ) (10)
The shape of the 95% confidence level for multifractal
background noise will be given by the same formula but
with different coefficients calculated as in Eq.(7). The
final values of these coefficients are collected in Table I,
with uncertainties presented in Table 2II

Our results may also be presented graphically in a form
of ’phase-like’ diagrams (see Fig. 8). Three separable ar-
eas in (∆h, γ) plane can be distinguished for every L.
The first area corresponds to multifractality connected
entirely with finite size effects and is not related to auto-
correlations at all. It is marked in red in Fig. 8. The sec-
ond domain, marked in light green, is related to (∆h, γ)
range, where the apparent multifractality manifests as a
result of finite length of data with the constant (i.e inde-
pendent on the chosen time scale) level of long memory.
The ’true’ multifractality, i.e. related with long memory
entirely dependent on the time scale, may occur only in
the white region (at 95% confidence level).

Finally, one should compare the obtained multifractal
noise thresholds with examples of the real multifractal
data. We took them from finance because of common
agreement that multifractality is a characteristic feature
of financial markets. This problem is considered in Fig. 9,
where the simulated ’phase-like’ diagram for data length
L ∼ 2× 103 is shown, together with multifractal proper-
ties of various markets. The particular length L has been
chosen as the average length of available data for anal-
ysed stocks. The multifractal properties for price indices
were taken from Ref. [35].

Fig. 6. Edge values of generalized Hurst exponent for
series with long-memory. Figures clearly show the lin-
ear dependence between the edge values h± ≡ h(±15)
and γ exponent. Extrapolation of fitted lines to the
point γ = 0 is interpreted as the edge values for fully
autocorrelated signal (C(τ) → 1, ∀τ).

It is seen that the presence of multifractality for the
price index data is not so evident for all markets. One
may find indices where it comes indeed as a result of
scaling properties changing with the time scale (e.g.
Venezuela, Indonesia, China). Simultaneously, there are
markets where the observed multifractality is generated
mainly (e.g. Philippines, Taiwan, Germany) or even en-
tirely (Ireland) by the finite size effects. In the case of
Philippines, Taiwan, Thailand, Germany, Spain, Greece,
almost 80% of the apparent multifractal behavior in price
indices is related to such an effect. The case of Ireland
is even more intriguing because the observed multifrac-
tality is the false signal coming entirely from finite size
effects.

Concluding, we have shown quantitatively how multi-
fractality arises from the finite size effects and (or) from
autocorrelations not changing with the time scale and
formed by the specific γ autocorrelation exponent. This
kind of multifractality, called by us "multifractal noise",
should be clearly distinguished from the real multifrac-
tality caused by memory effects dependent on the time
scale and thus leading to different scaling properties at
various scales. These quantitative findings confirm and
push further the study of the generalized Hurst exponent
spread suggested in [29] as not indicative for multifrac-
tality if ∆h ≤ 0.2. Our approach differs from that in Ref.
[26] because we used direct autocorrelation input between
data (see Eq.(3)). The provided analytical formulas de-
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Fig. 7. Spread ∆h0 of generalized Hurst exponent for
fully autocorrelated time series (γ = 0) versus the length
of data. Solid green line presents the power-law fit in
log-log scale and the top blue line corresponds to 95%
confidence level resulting from fit uncertainty and statis-
tics. Fitted parameters are C0 = 0.453, η0 = 0.124 and
C95%

0 = 0.484, η95%
0 = 0.120. Data point correspond-

ing to L = 29 has been removed from the fit due to
insufficient statistics for so short signal leading to huge
uncertainty in the estimation of generalized Hurst ex-
ponents within MF-DFA.

TABLE I
Results of the best fit for coefficients in Eq.(10)
and for their 95% confidence level describing the
multifractal threshold caused by the finite size ef-
fects.

C1 η1 C0 η0 C95%
1 η95%

1 C95%
0 η95%

0

0.603 0.175 0.453 0.124 0.631 0.171 0.484 0.120

scribe the multifractal noise threshold as the power law
function of time series length and the linear function of
autocorrelation exponent γ. It has been shown that in
the case of real financial data, their multifractal prop-
erties may substantially (even in 80%− 100%) originate
from the multifractal noise caused by finite size effects.
It makes difficult in some cases to separate what main
phenomenon is really responsible for the effect one ob-
serves. The presence of changing trends, periodicity and
additive noise described for artificial data in [28], and dis-

TABLE II
Uncertainty of the fit and statisti-
cal uncertainty (S0, S1) at 1σ level
rounded up to 10−3 for coefficients
in Eq.(10) describing the multifrac-
tal noise thresholds. Subscripts cor-
respond to γ = 0 and γ = 1 cases
respectively.

σC1 ση1 S1 σC0 ση0 S0

0.006 0.003 0.034 0.008 0.003 0.032

Fig. 8. Examples of phase-like diagrams for two data
lengths L = 212 and L = 220. Three separable areas
can be distinguished, marked in red, light green and
white respectively. They are related to (∆h, γ) domains
where multifractality is caused at 95% confidence level
correspondingly: by finite size effects, constant autocor-
relation level independent on the time scale and ’true’
multifractality (white).

Fig. 9. Simulated ’phase-like’ diagram for L = 2× 103

with outlined market data. Squares represent multifrac-
tal properties of price indices and data were taken from
Ref.[35]. The Bloomberg code has been used to describe
markets. The corresponding values for Hurst exponents
H = h(2) are also indicated (top axis) for convenience..
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cussed in some extend earlier, in the framework of abrupt
events for real data in [24], makes this analysis even more
complicated.

This confirms that multifractality is very tiny and del-
icate effect and one should be especially careful drawing
far-reaching conclusions from the multifractal analysis.
Our formulas are general enough to be applied also to
real data in other areas, in order to distinguish if and
how their multifractal properties have real multifractal
origin.
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