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In recent years the issue of costly punishment in systems where free-riding occurs has been a subject of
extensive research in the field of game theory. This issue is present in many areas of human activities like paying
taxes, using public transport, wireless Internet or P2P networks. It is one of the most common dilemmas in
modern societies. In this work we present a simple model of cooperation with three possible strategies (cooperate,
defect or punish). In the model players explore the available strategies according to their interactions with other
players. We introduce two groups of parameters. The first group is sociological-like and it describes the social
acceptance for the free riding behavior. The other group of parameters describes the economical aspects of the
system - the cost and efficiency of punishers. Using differential equations approach, as well as an agent based
model, we look for equilibrium properties of the system.

PACS: 87.23.Ge, 89.65.–s

1. Introduction

Human societies during the process of evolution devel-
oped very complex forms of cooperation. From collective
hunting in the Stone Age to modern public health care
systems, voluntary cooperation is one of the most impor-
tant indicators of civilization. In general, cooperation
can be described as a process in a society, the members
of which are willing to participate, i.e. to pay some cost,
in order to maintain some public good. The only purpose
of the public good is to bring benefits to its contributors.
However, as soon as any public good forms, the free riding
issue arises. Free riders are members of the society who
are not contributing to the public good but are still draw-
ing benefits from it. If free-riding becomes the dominant
strategy, the public good vanishes. Thus preventing free
riding is a big challenge for societies. Free riding problem
has been recognized in many areas of our life: avoidance
of tax payment or health care insurance premiums, using
public transport without paying for tickets, exploiting
natural resources, poaching or wireless network leeching.
In order to prevent this issue, various forms of punishing
are introduced. Basically, punishing means paying addi-
tional cost by contributors to punish the wrong-doers by
reducing their payoff. Thus punishment is an altruistic
act which helps to keep the public good.

One of the most popular models describing the coop-
eration problem is Public Good Game (see [1] for a re-
view). In this game a large population creates a public
good which is distributed equally among all members of
the group. The contributions that create the public good
are paid by the players voluntary. It has been proven ex-
perimentally [2, 3] that in systems without any form of
coercion or punishment the players tend not to partici-
pate, the public good reduces and finally vanishes. The
experiments have shown that altruistic punishment plays
an important role in such systems.

In recent years the issue of costly punishment has been
a subject of research in the field of game theory [4-6] .
Game-theoretic models assume that strategies spread ac-
cording to individual rational motivations. Players adopt
new strategies in order to maximize the utility function
(e.g. payoff).

However, there is another approach in which opinions,
cultures, languages can spread in a population as a direct
result of individual personal interactions (in a similar way
to epidemics) according to some transition probabilities.
For example, individuals can change their opinion under
the influence of social impact like in majority rule model
or voter model (for review see [7]) or can get infected
with a disease from one of their neighbors [8].

In this paper we investigate the equilibrium issue in
the systems with punishment using the epidemiological
approach. We propose both differential and agent-based
models and compare the outcome.

2. The model
In order to characterize the process of spreading of

strategies in a public good game we propose a mean
field differential system describing the transitions be-
tween available strategies among the players. The al-
lowed strategies are: contribute (C), free ride (F ) and
punish (P ).

We assume 4 types of transitions of strategies accord-
ing to the interactions with other agents. These transi-
tions are:

• α (Free rider → Contributor) - free riders change
their strategy to contribute after interaction with
punishers with probability α (α is the punishing
efficiency parameter).

• β (Punisher → Contributor) - punishers become
contributors with probability β, which is the cost
parameter of punishing.
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• γ (Contributor → Free rider) - contributors are
tempted to free ride; they change their strategy to
free riding with probability γ after interactions with
other free riders.

• δ (Contributor → Punisher) - contributors become
irritated by the destructive behavior of free riders
and change their strategy to punish with probabil-
ity δ after meeting free riders.

Parameters α, β, γ and δ have a meaning of transition
probabilities. Parameters α and β refer to economical
properties of the system (cost and efficiency). Parame-
ters γ and δ apply to sociological conditions of the pop-
ulation (social acceptance for harmful behavior). The
main equations take the following form:





dC
dt = PFα + P (1− F )β − CF (δ + γ)

dF
dt = CFγ − PFα

dP
dt = CFδ − P (1− F )β

(1)

These equations obey the Lotka-Volterra prey-
predator model assumptions. The most obvious differ-
ence is the presence of the second term of the third equa-
tion, which corresponds to the decrease of the number
of punishers caused by the lack of contributors. This de-
crease is connected with the cost of the punishing process
(β parameter): not necessary and expensive punishers
are removed from the population (they are converted to
fair contributors).

This model has two trivial unstable fixed points:
(C,F, P ) = (1, 0, 0) and (C, F, P ) = (0, 1, 0). The third
fixed point is stable:





C∗ = δα2

δα2+βγ2+αγ(β+δ)

F ∗ = 1− C∗
(

γ
α + 1

)

P ∗ = γ
αC∗

(2)

An alternative approach to the above problem is an
agent based model. We put all agents on a square lattice
with periodic boundary conditions. Each agent is able to
interact with his or her four neighbors. In order to ex-
plore well-mixed system the agents perform random walk
over the lattice. High mobility makes the spatial distri-
bution irrelevant for the dynamics, it prevents the forma-
tion of spatial patterns and makes it possible to compare
agent based model with the mean field approach.

At the beginning of the simulation one of the avail-
able strategies is randomly chosen for each agent. The
simulation process goes as follows:

• agents are selected according to the shuffle-update
rule

• each agent selects one neighbor at random and
changes his or her strategy according to the rules
presented at the beginning of this section

• at the end of each time step agents are shuffled
one more time and each agent changes his or her
position on the lattice with one randomly selected
neighbor.

3. Results

In this section we present the results of both models
for a number of sets of parameters. To visualize the out-
comes we plot 3-dimensional phase diagrams on ternary
graphs (Fig. 1). On the left column results of the mean
field model are shown. Arrows represent the directions
of the [dC, dF, dP ] vectors, the values of which were ob-
tained using the Euler’s method. Colors represent nor-
malized vector lengths (black is the lowest). The asterisk
symbol represents the stable fixed point from Eq. 2. On
the right column results from the numerical agent based
model are depicted. Each plot comprises a set of trajec-
tories for different initial conditions. Asterisk in the right
column corresponds the stable point from the differential
model for the sake of comparison.

As an example, we present three representative cases
of cooperation scenarios corresponding to three different
sets of parameters:

• low cost, high free riding acceptance - if the cost pa-
rameter β and the irritation parameter δ were zero,
the system would have an infinite number of stable
fixed points located on the straight line P = C
(equal number of contributors and punishers). For
β and δ close to zero, the system tends to the situ-
ation where the number of punishers and contrib-
utors is equal and then slowly moves towards the
fixed point.

• in case of high temptation, low cost and efficiency
the system is dominated by free riders.

• when free riding acceptance and temptation are
low, cost and efficiency are high (the economi-
cal and sociological condition of the population is
good), the system is dominated by contributors.

Although our model is similar to cyclic Lotka-Volterra
model with three species or rock-scissors-paper game (for
review see [9]), it exhibits different dynamic scenarios
than it’s prototypes. The dynamics of the model (with
non-zero parameters) always leads to the stable fixed
point, where all strategies are present in the population.
This fixed point corresponds to the Nash equilibrium of
the system, speaking in the game-theoretical language.
Such a behavior is similar to the Traulsen et al. model
[6] in the case of high mutation rate, that is high prob-
ability of random exploration of strategies. However our
model also contains unstable fixed points - saddle points,
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Fig. 1. Results from the mean field differential model
(left column) and agent based model with random walk
(right column) for the following sets of parameters (top
to bottom): α = 0.1, β = 0.01, γ = 0.1, δ = 0.01 (low
cost, high freeriding acceptance); α = 0.05, β = 0.05,
γ = 0.2, δ = 0.1 (high temptation, low cost and ef-
ficiency); α = 0.2, β = 0.2, γ = 0.05, δ = 0.3 (low
freeriding acceptance, low temptation, high cost and ef-
ficiency). Light color corresponds to fast dynamics, dark
color to slow dynamics.

which are attractive in one direction and repulsive in the
other. These points are C = 1 and F = 1.

Our model doesn’t reveal any orbits, which are present
in other previously mentioned models [4, 5]. In these
models fourth stategy is introduced - non-participants.
These players, also called loners, are not taking part in
the enterprise, they don’t participate but also they don’t

draw any benefits from the public good. In such systems
periodic orbits are present in the absence of the punish-
ers. This behavior is not possible in our model of three
strategies.

4. Conclusions

Models presented in previous sections, despite their
simplicity, provide reasonable results that correspond
with common sense and intuition. Agent based model
of random walkers shows a fine agreement with the mean
field approach based on differential equations.

This paper is an attempt to propose an alternative ap-
proach to the problem of spreading of cooperative strate-
gies in populations. Game-theoretic methods are well
established and seem to be proper for cooperation phe-
nomena. In our opinion, approach based on social impact
theory, like the one presented in this paper, is comple-
mentary to models based on rational payoff-aware dy-
namics.
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