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Accuracy of the box-counting algorithm for numerical computation of the fractal exponents is investigated. To
this end several sample mathematical fractal sets are analyzed. It is shown that the standard deviation obtained
for the fit of the fractal scaling in the log-log plot strongly underestimates the actual error. The real computational
error was found to have power scaling with respect to the number of data points in the sample (ntot). For fractals
embedded in two-dimensional space the error is larger than for those embedded in one-dimensional space. For
fractal functions the error is even larger. Obtained formula can give more realistic estimates for the computed
generalized fractal exponents’ accuracy.
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1. Introduction

In last decades computations of fractal dimensions (ex-
ponents) have become very popular in various areas of
physics, as well as in interdisciplinary research. Fractal
structures have been found in wide spectrum of prob-
lems, ranging from high energy physics [1] to cosmology
[2] and from medicine [3] to econophysics [4]. In spite
of its popularity accuracy of obtained results is usually
either not discussed or overestimated. Moreover, it has
been found that in quite a few papers wrong numerical
results and conclusions have been published [3, 5–8].

The aim of this paper is to calculate fractal exponents
for several well known mathematical fractals with the
box-counting algorithm to estimate real accuracy of these
computations. The dependence of accuracy with respect
to the size of the available data set (ntot) is also discussed
and its simple scaling properties are found.

The important point is that the statistical errors for
computed fractal dimensions is negligible in comparison
to the systematic error. This is true not only for different
computational algorithms but also within a given algo-
rithm for different size of the data set. Even in this case,
one gets systematic error about order of magnitude big-
ger than the statistical error. This will be shown in the
following Sections. Surprisingly, these practically impor-
tant issues were not sufficiently analyzed in the literarure.

It should be stressed that accuracy of fractal exponent
computations in principle depends on many factors. For
example, the accuracy can be degraded by presence of
noise in the data. Also, one can get different results us-
ing different box-counting algorithms (see e.g. [9, 10]),
another computational algorithms [11] or using different
digital representations of the investigated physical ob-

ject (picture). Furthermore, one should be very careful
translating Hurst exponents into fractal exponents as, in
general, there is no simple reation of both [12].

In Sec. 2 we calculate the box-counting fractal expo-
nents for six different fractal sets for various numbers of
data points (ntot). The generalized fractal exponent is
defined in the standard way [6]

d(q) =
1

1− q
lim

N→∞

∑
i log pq

i (N)
log N

, (1)

where N denotes the total number of boxes and pi(N) is
the measure of the subset in the i-th box for the given
division N . Where the box size ε = 1/N . To find ac-
curacy estimates the obtained results are compared with
precise mathematical values of the exponents determined
analytically. Furthermore, we calculate standard errors
for the linear fits in the log-log plots used to calculate the
exponents. Finally, the inverse power fits were found to
give fair approximation of accuracy dependence on the
size of the data set (ntot). The final Section contains
summary and conclusions.

2. Accuracy estimates

To start with we calculate fractal exponents for fractal
sets embedded in one-dimensional space, namely the clas-
sical Cantor set (CS) [13] and the (multifractal) asym-
metric Cantor set (ACS) [14]. The calculations have been
repeated for different sizes of the sets, ranging from less
than 102 up to 105 data points. The final results are
given in Fig. 1. Crosses indicate the real accuracy of the
box-countong algorithm computations, i.e. the absolute
value of the difference between the calculated exponent
and exact analytical result. Circles give standard errors
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obtained for the linear fits in the corresponding log-log
plots. In addition, the inverse power fit for accuracy as
the function of the number of available data points (ntot)
is given by the dashed line. The parameter α denotes the
exponent of the inverse power fit

real error ∼ 1
nα

tot

. (2)

At first glimp it is clear that the standard error, that is of-
ten treated as the accuracy of the algorithm, considerably
(up to the order of magnitude) underestimates the real
error. In the case of Cantor set (A) we have αCS ≈ 0.50.
Similar result was obtained for the case of asymmetric
Cantor set, αACS ≈ 0.48. Hence, in these cases one can
expect α ∼ 1/2 and the error of size ∼ 1/

√
ntot.

Fig. 1. Real accuracy of the fractal exponent d(0)
(crosses) and the standard errors obtained for the linear
fit in the log-log plots used to determine fractal expo-
nents (circles). The dashed line is the inverse power fit.
The upper plot (A) is for the Cantor set and the lower
plot (B) is for the ACS.

As the second step we analyze fractal sets embedded
in two-dimensional space: the Sierpiński triangle and the
Koch curve. The results are given in Fig. 2, with the same
notation as for the Fig. 1. In this case we have αST ≈ 0.31
and αKC ≈ 0.18. Hence, the error scales approximately
with α ∼ 1/4 and the error size is ∼ 1/n

1/4
tot . This results

is intuitively clear, as to have the same accuracy as for the
one-dimensional case the squared number of data points
has to be used. In these examples the actual error is also
much bigger than the estimated standard error.

For fractals embedded in two-dimensional space spe-
cial attention should be paid to fractals that are of the
function type, i.e. there exists a reference frame in which
for a given value of one coordinate there is at most one
point of the fractal set. Hence, in one direction number

Fig. 2. Real accuracy of the fractal exponent d(0)
(crosses) and the standard errors obtained for the linear
fit in the log-log plots used to determine fractal expo-
nents (circles). The dashed line is the inverse power fit.
The upper plot (A) is for the Sierpiński triangle and the
lower plot (B) is for the Koch curve.

Fig. 3. Real accuracy of the fractal exponent d(0)
(crosses) and the standard errors obtained for the linear
fit in the log-log plots used to determine fractal expo-
nents (circles). The dashed line is the inverse power fit.
The upper plot (A) is for the Weierstrass-Mandelbrot
curve with parameter D = 1.5 and the lower plot (B) is
for the curve with D = 1.8.
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of points in a given box is limited and this may cause
slower convergence of the box-counting scheme (scaling
can be observed in one direction only) resulting in bigger
errors, slower convergence. Because this type of fractals
has wide applicability, e.g. in the time series analysis,
we will consider this case separately. A good example of
such fractal sets with precisely known fractal dimensions
are the Weierstrass-Mandelbrot (WM) functions [15]

W (t) =
n=+∞∑
n=−∞

1
γ(2−D)n

[1− cos(γnt)] . (3)

We investigate two WM fractal functions with dimen-
sions d = 1.5 (A) and d = 1.8 (B). The results are shown
in Fig. 3. Again one can find a fair inverse power fit
for the error with the exponents αWM equal to 0.14 and
0.12, respectively (α ∼ 1/8 and the error size is ∼ 1/

1/8
tot ).

Hence, to have similar accuracy as for ordinary frac-
tals embedded in two-dimensional space one has to use
squared number of data points (ntot). This is intuitively
clear, as in this case the fractal scaling can be observed
in only one (instead of two) dimensions. In effect, to
have reasonable accuracy for the fractal exponent, a very
large number of data points has to be taken into account
(> 105) even though we deal with perfect mathematical
fractals without any external noise.

4. Summary and conclusions

It has been shown that for the box-counting algorithm
there is a fair inverse power scaling of the actual error
of the computed fractal exponents of the type (2). The
standard error calculated for the fit in the log-log plot
strongly underestimates the actual error leading to the
overestimated accuracy. Furthermore, to obtain a given
level of accuracy number of data points (ntot) used for
fractals embedded in two-dimensional space should be
the squared number of data points sufficient for fractals
embedded in one-dimensional space. The corresponding
exponents α are roughly equal to 1/4 and 1/2, respec-
tively.

TABLE
Absolute errors

ntot 1000 10 000 100 000

1-D fractals ±0.020 ±0.006 ±0.002
2-D fractals ±0.060 ±0.030 ±0.020
2-D W-M curve ±0.200 ±0.150 ±0.100

Similar phenomenon occurs for fractal functions em-
bedded in two-dimensional space, where the exponent α
was found around 1/8. Hence, up to an overall factor,
to have the same accuracy as for the Cantor set and 102

data points one has to use of order 108 data points for
the fractal WM function.

The formula (2) and plots in Figs. 1–3 can be used to
estimate accuracy of such computationion in much higher
accuracy than the estimated standard errors for the lin-
ear fits. The estimated accuracy of the box-counting al-
gorithm for various sizes of the data sets (ntot) is also
presented in Table. It should be stressed that for fractals
with additional external noise one can expect even worse
results — the errors will be greater.
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