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We apply the Zipf power law to financial time series of WIG20 index daily changes (open-close values). Thanks

to the mapping of time series signal into the sequence of 2k + 1 ’spin-like’ states, where k = 0, 1/2, 1, 3/2, . . ., we
are able to describe any time series increments, with almost arbitrary accuracy, as the one of such ’spin-like’ states.
This procedure leads in the simplest non-trivial case (k = 1/2) to the binary data projection. More sophisticated
projections are also possible and mentioned in the article. The introduced formalism allows then to use Zipf power
law to describe the intrinsic structure of time series. The fast algorithm for this implementation was constructed
by us within MatlabTM software. The method, called Zipf strategy, is then applied in the simplest case k = 1/2
to WIG 20 open and close daily data to make short-term predictions for forthcoming index changes. The results
of forecast effectiveness are presented with respect to different time window sizes and partition divisions (word
lengths in Zipf language). Finally, the various investment strategies improving return of investment (ROI) for
WIG20 futures are proposed. We show that the Zipf strategy is the appropriate and very effective tool to make
short-term predictions and therefore, to evaluate short-term investments on the basis of historical stock index
data. Our findings support also the existence of long memory in financial data, exceeding the known in the
literature 3 days span limit.

PACS: 05.45.Tp, 89.75.Da, 05.40.-a, 89.75.Da, 89.65.Gh

1. Introduction
The Zipf law has originally been introduced in linguis-

tic [1] to describe the frequency occurrence of different
words in written text. Since then, the similar law has
been observed in systems of various origin and in many
disciplines of science, economy, finances, biology, sociol-
ogy, medicine, physiology and many others [2]. In the
general formulation, one may describe the Zipf law as
follows. Let {e1, e2, e3, ..., en} be an arbitrary system of
the countable number of events, ordered in such a way
that the frequency fk of the event ek is bigger than the
corresponding frequency fk+1 of ek+1 (k = 1, 2, ..., n−1).
We say that the Zipf power law is satisfied in this system
of events, if for normalized frequencies fk there exists a
real number ζ > 0 (called the Zipf exponent) such that:

fk ∼ k−ζ (1)
The index k is then called the rank of event ek.

The origin of Zipf law is not well understood. Nev-
ertheless, we know since the paper by Czirok et.al [3]
that if correlations exist in the complex system then the
frequencies of various events in this system obey the
Zipf law. The conjecture between the Hurst exponent
H (1/2 ≤ H ≤ 1) [4], responsible for the level of cor-
relations (autocorrelations) in the system, and the Zipf
exponent ζ is given by [3, 5]:

ζ = |2H − 1| (2)
The inverse statement is not true [6] – the existence

of Zipf law in the system does not imply automatically
correlations nor long memory between events in the sys-
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tem. However, if for shuffled data (the shuffling pro-
cedure may look differently for various considered sys-
tems of data) the Zipf law appears with Zipf exponent
0 < ζshuff < ζr, where ζr was calculated for the original
data, then we may conclude that the power law acting
in given system comes as a result of correlations between
different events and ζshuff describes the bias level of the
system [7]. Thanks to the mapping between time series
signal and letters [7, 8], one may investigate the interior
structure of time series with the use of Zipf power law.
The generalization of such mapping can be made as fol-
lows. Let x1, x2, ..., xn, xn+1 is the given discrete time
series with increments ∆xi = xi+1 − xi (i = 1, 2, ..., n).
The sequence {∆xi} may be mapped into the n-string
of 2k + 1 states with integer and positive 2k (’spin-like’
chain). In the simplest case (k = 1/2), we have only
two possible states: u (up) and d (down), corresponding
to ∆xi > 0 or ∆xi < 0 respectively (the case k = 0 is
trivial).

Introducing the threshold l > 0, we may consider three
admissible states: ∆xi > l, ∆xi < −l or −l ≤ ∆xi ≤ l,
denoted as u, d, s (s for ’stabile’) respectively. The whole
range of thresholds may be introduced this way, lead-
ing to more sophisticated discrete approximation of time
series increments. This mapping may be done with ar-
bitrary accuracy if the number of thresholds (states) is
sufficiently large. However, one has to remember that if
the number of admissible states increases, we need also
larger amount of data (the time series length) to be able
to apply the Zipf law for sufficiently large statistics and
to overcome the bias resulting from variety of words put
into the relatively short text. This might be a problem in
practical applications due to the finite and usually short
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time series of real data, e.g. in macroeconomics. There-
fore we consider only two states further on in this paper.

2. Zipf strategy description

The prediction based on the Zipf law for future behav-
ior of time series can be summarized in few steps. First,
we translate the given time series into a text consisting
of a sequence of u, d letters. Unfortunately, no words are
distinguished so far in this text. Therefore one should
divide it into non-overlapping subsets containing m let-
ters each. We call them ’words’ of length m or shortly
’m-words’. Next, the window length w (amount of data)
over which the Zipf analysis will be performed, must be
chosen. We perform the local Zipf analysis, that is we
shift forward this window each trading day by one ses-
sion. Thus, we always deal with w available data back in
time. We have chosen w = 400, 500, 600, 700, 800 in our
analysis.

The crucial role is played by m-words. They reveal the
structure and eventual possible memory in financial data.
Once we want to make prediction for the sign of time se-
ries change in one trading day ahead, we construct the m-
word as (l1, l2, ..., lm−1, xm), where l1, ..., lm−1 are known
and describe the known evolution of time series in last
m−1 days, while xm denotes an unknown behavior, still
to be predicted. There are two possibilities for xm = u, d
in two states scenario. Let pu ≡ p(l1, l2, ..., lm−1, u) is
the normalized frequency that (l1, l2, ..., lm−1, u) string
appears in the w-length text. The corresponding nota-
tion for pd follows. One thus obtains from the Zipf law:

pu

pd
∼ (

Ru

Rd
)−ζ (3)

where Ru(d) are respective ranks for m-words in w-length
text.

The additional constrain pu + pd = 1 leads to the so-
lution of Eq.(3):

pu = Ru
−ζ/(Ru

−ζ + Rd
−ζ),

pd = Rd
−ζ/(Ru

−ζ + Rd
−ζ) (4)

Fig. 1. Closure day WIG20 index time history Dec.20
’99–May 25 ’10 (a), and the corresponding artificial
"day-light" WIGdl20 index (b) in the same period.

If pu > pd, one gets a signal that the index is very likely
to increase in the m-th session, otherwise (pu < pd), the
index is indicated to fall down. In the proposed strat-
egy, we may open the so called short or long position.
It means that we can sell or buy futures contracts at
the opening price each trading day. Then, at the end
of a trading day, we close this position (we buy or sell
respectively) at the closing price. In order to reduce
transaction costs we decided to take the day trading, i.e.
open and close positions on the same trading day. It
saves about 1/3 cost of a commission charge depending
on the offered tariff charge. This is why instead of closing
prices each day, we are more interested in open − close
WIG20 values each trading day. Fig. 1a represents the
history of WIG20 closing prices in the period: Decem-
ber 20 ’99 - May 25 ’10 and the corresponding history of
cumulative daily changes∗ in Fig. 1b. The latter index
reflects changes on the market that take place only dur-
ing the transaction day. It neglects changes made during
the night, mostly affected by overseas (US) trading. We
will call such index ’the day-light’ WIG20 and denote it
WIGdl20.

The proposed strategy can obviously be expanded to
more than one day prediction. In such a case, the con-
sidered m-word would be (l1, l2, ..., lm−2, xm−1, xm) for
two days prediction with unknown string of letters xm−1,
xm. Similarly, three days prognosis may be done. These
strategies would correspond to futures contracts started
particular day in the morning and effective one or two
days ahead after closing the session.

Let us recall also few basic information on futures con-
tracts we will use. Futures contracts are example of
derivatives. In case of derivatives, the words ’buy’ and
’sell’ are not used, because in some cases it may be mis-
leading. Instead, the terms ’long position’, i.e. an obli-
gation to buy the underlying asset at a fixed price and
’short position’, i.e. an obligation to sell the underly-
ing asset at a fixed price, are used. Thus, the meaning
of ’short’ and ’long’ has no relation to the time a posi-
tion is being hold. Unlike options, futures contracts are
symmetrical. It means that both parties are obligated to
provide or buy the underlying asset. There is no cash
flow between the parties at the opening of the contract.
The crucial role is played in futures contracts by the so
called margin. It is an initial deposit we have to make
while opening the position. It is a hedge against the risk
of default of the contract. Its minimum amount is deter-
mined by the clearing house. The margin is only a part
of the contract value and it creates an important finan-
cial leverage, which amplifies both gains and losses. The
margin is always required. If the WIG20 changes by one
point, it results in a gain or loss of PLN 10 for one con-

∗ cumulative daily changes are the differences between closing and
opening prices of the index each trading day, summed over the
running period
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tract. The margin is about 10% and it depends mainly on
the volatility of the index. While opening the position,
the corresponding margin is blocked in the account. At
the end of the day, the return is calculated (this process
is called marking-to-market). The profits are added to
the deposit, and the loss is subtracted. If the amount of
deposit falls below a certain minimum value, known as
maintenance deposit, trader will get a margin call to its
initial value. If he does not do this, his position will be
automatically closed.

Let us look at the following example explaining the
leverage role of futures contracts. Let us assume that
the WIG20 index amounts to 2500 points and the re-
quired margin is 10%. The value of one contract is then
PLN 25,000 (2500 points × PLN 10). Assume, we open
long position in two contracts. Thus the initial margin
amounts to PLN 5,000. If WIG20 increases up to 2550
points at the end of a trading day and we close the posi-
tion, then the value of one contract will be PLN 25,500.
So we would receive the profit of PLN 1,000 what makes
20% of our initial investment. At the same time WIG20
has increased just 2%.

3. Results and conclusions
First, we have checked the performance of the Zipf law

locally, for various window lengths w and for different
word lengths m. The used w values cover the whole pe-
riod of available data for WIG20 and change between
∼ 1.5 up to ∼ 3 years of data (w = 400÷ 800). The ex-
amples of fit for the Zipf power law in logarithmic scale
for these parameters are shown in Figs. 2–4. All plots

Fig. 2. Examples of Zipf analysis for real (stars) and
shuffled (circles) data of length w = 400, 600, 800 re-
spectively from WIGdl20 index, divided into words of
length m = 4 trading days. Solid lines indicate the best
linear fit of the local Zipf law in logarithmic scale and
the corresponding scaling regime).

represent two fits, made correspondingly for the original
and shuffled data (WIGdl20 changes), translated into bi-
nary sequence and then divided into m-word pieces. The
scaling regime, although short due to respectively small
number of data w, enabled to find the local Zipf expo-
nent ζr for the original, and ζshuff for shuffled, uncorre-

Fig. 3. Examples of Zipf analysis for real (stars) and
shuffled (circles) data of length w = 400, 600, 800 re-
spectively from WIGdl20 index, divided into words of
length m = 5 trading days. Solid lines indicate the best
linear fit of the local Zipf law in logarithmic scale and
outline the scaling range of the Zipf power law.

Fig. 4. Same as in Figs. 2, 3 but for m = 6 m-words.

lated data. We have observed in majority of cases† that
ζr > ζshuff . Due to lack of space, only nine exemplary
plots are shown in Figs. 2–4 as the illustration of this
phenomenon.

Fig. 5. Evolution of local Zipf exponent for particular
choice of word length m = 4 (top left), m = 5 (top right)
and m = 6 (bottom) as the function of time window
length w.

† this relation was sometimes violated for small w where the bias
of artificial autocorrelations emerging from small statistics is
present even for uncorrelated data
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Fig. 6. Results of Zipf strategy with word length m =
4, m = 5 and m = 6 applied for WIGdl20 data for
500 consecutive trading days starting from May 8’ 08
till May 25 ’10. Blue curve corresponds to evolution of
portfolio value when no strategy is implied (i.e. hold
position). TABLE
Results for the local Zipf strategy applied to WIGdl20 in
the period May 8 ’08-May 25 ’10. The calculated profit
(in PLN) is based on one WIG20 futures contract.

Word length m

w 4 5 6
accuracy profit accuracy profit accuracy profit

400 53.0% 4 570 53.0% 7 630 55.4% 13 310
500 53.6% 6 230 54.6% 9 030 57.0% 19 230
600 53.0% 6 070 54.4% 190 55.2% 16 010
700 53.0% 3 570 54.2% 5 370 55.2% 20 130
800 53.6% 8 390 53.8% 1 690 54.8% 15 490

The detailed dependence of ζr on the number of data
taken in the analysis and on the length m of the probe
word can also be found (see Fig. 5 for details). It is
evident from this figures that for shorter window lengths
w < 300, corresponding to no more than one year of trad-
ing, the bias of artificial autocorrelations is more visible
due to insufficient data statistics. On the other hand,
for longer w exceeding 3 years (more than 800 sessions),
the local Zipf exponent approaches values ζshuff . 0.15
shown for shuffled data in Figs. 2–4. Such behavior may
be explained as the effect of autocorrelation decay in
global long-term data. This situation is somehow similar
to the case with local Hurst exponent being estimated
for too short or too long time windows [9]. The proper
choice of moving window length w was crucial for the lo-
cal Hurst exponent estimation to eliminate the bias and
to extract the possible autocorrelation signal [10, 11]. We
decided to use 400 < w < 800, i.e. the middle part of w
spread from the one shown in Fig. 5.

The results for ζr, Ru, Rd calculated in subsequent
moving windows like in Figs. 2–4, allow to predict pu vs
pd frequencies in the local Zipf strategy based on Eq.(4).
The final outcomes of this strategy are collected in Ta-
ble for m = 4, 5, 6 and w = 400, 500, 600, 700, 800 re-
spectively. More than 50% of WIGdl20 changes is well
predicted in all considered cases. The best performance
is found for w = 500 (marked in bold font in Table), in

particular for m = 6. It figures the return profit around
870% in two years (May ’08-May ’10), since the aver-
age initial deposit for WIG20 futures in that period was
calculated as PLN 2, 217 assuming the 10% margin. The
performance for other m-words in this period is also plot-
ted in Fig. 6. Let us note that the longer investment hori-
zon is, the better results of the strategy are achieved due
to larger statistics over which the accuracy (exceeding
50%) of Zipf strategy acts.

Our findings support the statement that Zipf law can
be used as the marker of long memory effects in financial
data [7, 12] and is also the useful basis for investment
strategy in futures contracts. Moreover, the comparison
of Zipf exponents for ordinary and shuffled financial data
indicates that this analysis is more sensitive than the
observation of heavy tails in return probability density
function. It is well known that heavy tails in such dis-
tributions decay for time-lags longer than 3 trading days
[13]. We were able to see the memory effect for time-
lags exceeding this level (see Fig.4) and we confirm the 6
day memory effect in financial data suggested for partic-
ular two stocks: SGP from NASDAQ and OXHP from
NYSE already in [12]. Our results indicate this might be
a more general property for stock time series, indicating
the presence of one-week cycles.

The next important remark is that the local Zipf strat-
egy gives excellent results when applied to futures con-
tracts independently on the current trend on the market.
This strategy, although applied in this paper to WIG20
data only, can be extended to other financial, FOREX
or commodity markets data where futures contracts are
available. The strategy offers also possibility to make an
automatic numerical application, what might be impor-
tant for practitioners and financial analysts as the new
indicator of technical analysis.
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