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Confirmation of the existence of memristor by researchers at 2008 attracts much interest on this newly found
circuit element. This is due to the fact that memristor opens up new functionalities in electronics and it has led
to the interpretation of phenomena regarding not only electronics but also biological systems. In this work, we
have studied the simulated dynamic behavior of two unidirectionally coupled nonlinear circuits via a memristor.
This confirms the transition from chaotic desynchronization to complete chaotic synchronization through a regime
of intermittent synchronization between the unidirectionally coupled circuits.

PACS: 05.45.Xt

1. Introduction

At the beginning of the 70’s, Leon Chua reasoned that
there should be a fourth fundamental electronic element,
next to the three well known elements, namely the resis-
tor (R), the capacitor (C) and the inductor (L). He was
led to this assumption because a link between charge and
flux was missing. Chua dubbed this missing link by intro-
ducing the memristor (short for memory resistor) [1] and
created a crude example to demonstrate its key property
i.e. that it becomes more or less resistive (less or more
conductive) depending on the amount of charge that has
flowed through it.

Until 2008, there has not been constructed such an
electronic device, thus no real world confirmation existed.
That year a physical model of a two-terminal device be-
having as a memristor was announced in Nature [2]. Sci-
entists at the Laboratories of Hewlett-Packard reported
the realization of a new nanometer-scale electric switch,
which “remembers” whether it is “on” or “off” after its
power is turned off.

As a result, this discovery has attracted a great at-
tention. This was reinforced by the fact that the fea-
tures demonstrated by memristor could explain several
phenomena in many nanoscale systems [3]. Memristors
can also be used to design nonlinear oscillators by letting
them to be the nonlinear device, for example, in Chua’s
circuit family [4–6].

Another point is that electronic circuits with memory
circuit elements (memristors, memcapacitors and memin-
ductors) can simulate processes typical of biological sys-
tems [7]. Nowadays, neuromorphic computing circuits
are designed by borrowing principles of operation typical
of the human (or animal) brain and therefore, due to their
intrinsic analog capabilities they can potentially solve
problems that are cumbersome (or outright intractable)
by digital computation. Therefore, certain realizations

of memristors can be very useful in such circuits because
of their intrinsic properties which mimic to some extent
the behavior of biological synapses [8].

In this work, we have studied via computer simulations
the dynamic behavior of two identical nonlinear circuits
coupled via a memristor. The proposed memristor has a
cubic nonlinear relation between flux (φ) and charge (q).

In the next sections the memristor and the coupled cir-
cuits are described, followed by the study of the dynamic
behavior of the resulting dynamical system. Finally, con-
clusions remarks are presented in the last section.

2. The proposed memristor

The memristor is an electronic element which satisfies
the relation between charge (q) and flux (φ), of Eq. (1).
W(q) is called memductance and relates memristor cur-
rent (iM) and voltage (υM) through the relation of Eq. (2):

W(φ) =
dq(φ)

dφ
, (1)

iM = W(φ)υM . (2)

In the case of a linear element, W is a constant, and
the memristor is identical to a resistor. However, in the
case of memductance W being itself a function of a flux
φ that is produced by a nonlinear circuit element, then
no combination of the fundamental circuit elements, re-
produces the same results as the memristor. Nowadays,
many scientists consider memristor as a nonlinear circuit
element with specific characteristics. For this reason vari-
ous forms of memductances, such as cubic [4] or piecewise
linear [5, 6], are proposed.

The proposed memristor is a flux-controlled memristor
described by the function W(φ(t)), where q(φ) in Eq. (3)
is a smooth continuous cubic function of the form

(268)
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q(φ) = −k1φ + k3φ
3, (3)

with k1, k3 > 0. As a result, in this case the memductance
W(φ) is provided by the following expression:

W(φ) =
dq(φ)

dφ
= −k1 + k3φ

2. (4)

3. The coupling scheme

In Fig. 1 two identical nonlinear circuits, which pro-
duce double scroll chaotic attractors [9], are unidirection-
ally coupled, via a memristor M. The buffer in the cou-
pling branch isolates dynamics of the first circuit from
the influence of the dynamics of the second circuit. The
state equations, describing the normalized system, are as
follows:



dx1
dτ = y1,

dy1
dτ = z1 + R

2

(
k1 + 3k3w2

)
(y2 − y1),

dz1
dτ = − x1

2 − y1
2 − z1

2 + R
2Rx

f (x1),
dx2
dτ = y2,

dy2
dτ = z2 + R

2

(
k1 + 3k3w2

)
(y1 − y2),

dz2
dτ = − x2

2 − y2
2 − z2

2 + R
2Rx

f (x2),
dw
dτ = RC

2 (y2 − y1).

(5)

State variables x1,2, y1,2, and z1,2, represent the voltages
at the outputs of the operational amplifiers numbered
as “1”, “2” and “3”, respectively (Fig. 1). The first three
equations of system (5) describe the first of the two cou-
pled identical double scroll circuits, while the other three
describe the second one.

Fig. 1. The schematic of the double-scroll circuits, uni-
directionally coupled via the memristor.

State variable w represents the magnetic flux (φ) of
memristor M. The saturation functions f (x1,2) used in

Eq. (5), are defined in Eq. (6), where n = R2/R3:

f (x1,2) =



1, if x1,2 ≥ n,
1
n x1,2, if − n ≤ x1,2 < n,
−1, if x1,2 < −n.

(6)

This implementation demonstrates an i–v characteristic
with two saturation plateaus at ±1, as well as an inter-
mediate linear part with slope 1/n.

The values of the circuit elements were: R = 20.0 kΩ,
R1 = 1.0 kΩ, R2 = 14.3 kΩ, R3 = 20.4 kΩ, RX = 12.5 kΩ,
and C = 1.0 nF. All the operational amplifiers were of the
type LF411. The voltages of the positive and negative
power supplies were set to ±15 V.

For this specific implementation, each circuit operated
independently in a chaotic mode, demonstrating a dou-
ble scroll chaotic attractor. This was further numeri-
cally confirmed by calculating the related Lyapunov ex-
ponents, which were found to possess the following val-
ues: LE1 = 0.13271, LE2 = 0.00000 and LE3 = −0.85410
(at least one with positive value).

4. Dynamic behavior of the memristor
coupled circuits

In this work, the dynamic behavior of the dynamical
system described by Eq. (5) was studied numerically. We
have chosen the factor k1 = 0.5 × 10−4 C/Wb of Eq. (4),
while the other factor k3 played the role of the bifurca-
tion parameter. The system was numerically solved by
employing a fourth order Runge–Kutta algorithm.

Next the bifurcation diagrams of x2 − x1 versus k3 are
shown. These diagrams were produced by increasing the
factor k3, while the initial conditions of the system in
each iteration remained the same. When the difference
x2 − x1 becomes equal to zero, this means that the two
coupled circuits are in chaotic synchronization.

In detail, two bifurcation diagrams of x2 − x1 versus k3,
for two different sets of initial conditions, are shown in
Fig. 2. In general, the morphology in both bifurcation
diagrams of Fig. 2 is the same, with a difference at the
width of the chaotic desynchronization region. As one
can observe every single circuit remains in a chaotic state
for a wide range of values of k3. Then the system, in both
cases, turns from chaotic desynchronization to chaotic
synchronization. It should be mentioned that the cou-
pled system was at the saturation region for low values
of factor k3. This is the reason why the two bifurcation di-
agrams of Fig. 2 begin at the value of k3 = 1×104 C/Wb3.

In Fig. 3 phase portraits of x2 versus x1, for various
values of the parameter k3 in the case of the first bi-
furcation diagram in Fig. 2a, are shown. As we can
see in Fig. 3a the system demonstrates an expanded
range of chaotic desynchronization for low values of k3
(1× 104 C/Wb3 ≤ k3 < 3.88× 104 C/Wb3). Then the sys-
tem passes to a more limited chaotic desynchronization
region for 3.88 × 104 C/Wb3 ≤ k3 < 5.58 × 104 C/Wb3

(Fig. 3b).
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Fig. 2. Bifurcation diagrams (x2 − x1 vs. k3), with k1 =
0.5× 10−4 C/Wb and initial values: (a) (x1, y1, z1, x2, y2,
z2, w) = (2, 1, 0.1, 0.8, 1.5, 0.05, 0.00001) and (b) (x1, y1,
z1, x2, y2, z2, w) = (−1, 0.5, 0.08, 1, −1.5, −0.03, 0).

Fig. 3. Phase plot (x2 vs. x1) with k1 = 0.5×10−4 C/Wb
and for the set of initial values of Fig. 2a: (a) k3 =
1.5×104 C/Wb3 — expanded chaotic desynchronization,
(b) k3 = 5 × 104 C/Wb3 — chaotic desynchronization,
(c) k3 = 5.7 × 104 C/Wb3 — incomplete synchronization
and (d) k3 = 9 × 104 C/Wb3 — chaotic synchronization.

In the region between desynchronization to synchro-
nization (5.58 × 104 C/Wb3 ≤ k3 < 6.4 × 104 C/Wb3), it
is shown that an intermediate regime of incomplete syn-
chronization emerges. The synchronization phase por-
traits consist of trajectories spending most of the time on
the diagonal, only temporarily escaping from it (Fig. 3c).
These escapes correspond to the bursts in the differ-
ence signal. The difference signal is almost zero for
long time spaces, bursting only occasionally at signifi-
cantly non-zero values. These bursts become of shorter
duration and appear more infrequently, with increas-
ing values of k3. This is confirmed in Fig. 4, where
the corresponding time-series of signal [x2(t) − x1(t)], for
k3 = 5.7 × 104 C/Wb3 is shown. Finally, the system, for
k3 ≥ 6.4×104 C/Wb3, remains always in complete chaotic
synchronization state (Fig. 3d).

Fig. 4. Timeseries of signal [x2(t)− x1(t)], in the case of
intermittent synchronization of Fig. 3c.

5. Conclusion

In this report we have studied the unidirectionally cou-
pling scheme between two identical nonlinear circuits via
a memristor. The fact that memristors mimic the behav-
ior of biological synapses makes the conclusions of this
approach very interesting. Also, the coupling system via
the memristor shows similar but more interesting behav-
ior in relation to that observed in the coupling between
the same circuits via a linear resistor [10]. In general, as
the coupling parameter k3 is increased, the system un-
dergoes a transition from chaotic desynchronization to
complete chaotic synchronization through a regime of in-
termittent synchronization.
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