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Non-Polynomial Spline Method for a Time-Dependent
Heat-Like Lane– Emden Equation
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In this study, a time-dependent heat-like Lane–Emden equation is solved by using a non-polynomial spline
method. An example is solved to assess the accuracy of the method. The numerical results are obtained for
different values (n) of equation. The results indicate that non-polynomial spline method is effectively implemented.
It is seen that results are compatible with exact solutions and consistent with other existing numerical methods.
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1. Introduction

In this paper, we consider heat-type equation for phys-
ical problems

uxx +
r
x

ux + ag(x, t)y(u) + h(x, t) = ut , (1)

for 0 < x ≤ L, 0 < t < T , r > 0, a ∈ Z, subject to the
boundary conditions u(0, t) = v(t), and ux(0, t) = 0 where
g(x, t)y(u) + h(x, t) is nonlinear heat source, u(x, t) is the
temperature, and t is the dimensionless time variable.

Some researchers dealed with this type of models [1–9].
These physical models describe some important equa-
tions as the Navier–Stokes equations can be converted
into various heat-like equation in some special cases [10].
Furthermore, thermo-pore-elastic equations describing
fluid migration through fluid-saturated porous media at
depth in the crust [11] and this theory [12] can be ex-
pressed in heat-like equations. The analytic solutions to
several forms of the above problem were presented by
Shawagfeh [4], Wazwaz [13–16] using the Adomian de-
composition method. Chowdhury [17] and Hashim [18],
He et al. [19–21] have solved these problems with using
homotopy-perturbation and variational iterational meth-
ods, Momani [22] applied the method to the time frac-
tional heat-like equation with variable coefficient.

In this paper, we solved this problem numerically with
non-polynomial spline method and found absolute errors
which are obtained by comparing numerical results with
existing above analytic (exact) solutions. The paper is
organized as follows: non-polynomial spline method is
described in Sect. 2 briefly. In Sect. 3 the method of
solution of Eq. (1) is presented. In Sect. 4 some numeri-
cal result that are illustrated using Matlab 7.0 are given
to clarify the method. Concluding remarks are given in
Sect. 5.
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2. Non-polynomial spline method

We divide the interval [a, b] into n equal subintervals
using the grid points xi = a + ih, i = 0, 1, 2, . . . , n with
a = x0, xn = b, h = (b − a)/n, where n is an arbi-
trary positive integer. Let u(x) be the exact solution
and ui be an approximation to u(xi) obtained by the non-
-polynomial cubic S i(x) passing through the points (xi, ui)
and (xi+1, ui+1), we do not only require that S i(x) satis-
fies interpolatory conditions at xi and xi+1, but also the
continuity of first derivative at the common nodes (xi, ui)
are fulfilled. We write S i(x) in the form

S i(x) = ai + bi(x − xi) + ci sin τ(x − xi)
+ di cos τ(x − xi) , i = 0, 1, . . . , n − 1 , (2)

where ai, bi, ci, and di are constants and τ is a free pa-
rameter. A non-polynomial function S (x) of class C2[a, b]
interpolates u(x) at the grid points xi, i = 0, 1, 2, . . . , n,
depends on a parameter τ, and reduces to ordinary cubic
spline S (x) in [a, b] as τ→ 0.

To derive expression for the coefficients of Eq. (2) in
term of ui, ui+1, Mi and Mi+1, we first define:

S i(xi) = ui , S i(xi+1) = ui+1 ,

S ′′i (xi) = Mi , S ′′i (xi+1) = Mi+1 . (3)
From algebraic manipulation, we get the following ex-
pression:

ai = ui +
Mi

τ2 , bi =
ui+1 − ui

h
+

Mi+1 − Mi

τθ
,

ci =
Mi cos θ − Mi+1

τ2 sin θ
, di = −Mi

τ2 ,

where θ = τh and i = 0, 1, 2, . . . , n − 1.
Using the continuity of the first derivative at (xi, ui),

that is S ′i−1(xi) = S ′i (xi) we obtain the following relations
for i = 1, . . . , n − 1:

αMi+1 + 2βMi + αMi−1 = (1/h2)(ui+1 − 2ui + ui−1) , (4)
where α = −1/θ2 + 1/θ sin θ, β = −1/θ2 − cos θ/θ sin θ and
θ = τh.

(262)
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The method is fourth-order convergent if 1−2α−2β = 0
and α = 1/12 [23].

3. Analysis of method

To illustrate the application of the spline method devel-
oped in the previous section we consider time-dependent
heat-like Lane–Emden equation that is given in Eq. (1).

At the grid point (xi, ui), the proposed problem in
Eq. (1) may be discretized by

u′′i +
r
xi

u′i + ag(xi, t)ui + h(xi, t) =
ui − ui−1

k
. (5)

Substituting Mi = u′′i and f (xi) = ui−1 in Eq. (5), we get

Mi +
r
xi

u′i + ag(xi, t)ui + h(xi, t) =
ui − f (xi)

k
. (6)

Solving Eq. (6) for Mi, we obtain

Mi =

(
1
k
− ag(xi, t)

)
ui − r

xi
u′i − h(xi, t) − f (xi)

k
. (7)

The following approximations for the first-order deriva-
tive of u in Eq. (7) can be used:

u′i =
ui+1 − ui−1

2h
, u′i+1 =

3ui+1 − 4ui + ui−1

2h
,

u′i−1 =
−ui+1 + 4ui − 3ui−1

2h
. (8)

Therefore Eq. (7) becomes

Mi =

(
1
k
− ag(xi, t)

)
ui − r

xi

(ui+1 − ui−1

2h

)

− h(xi, t) − f (xi)
k

(9)

and

Mi+1 =

(
1
k
− ag(xi+1, t)

)
ui+1 − r

xi+1

(
3ui+1 − 4ui + ui−1

2h

)

− h(xi+1, t) − f (xi+1)
k

, (10)

Mi−1 =

(
1
k
− ag(xi−1, t)

)
ui−1 − r

xi−1

(−ui+1 + 4ui − 3ui−1

2h

)

− h(xi−1, t) − f (xi−1)
k

. (11)

Substituting Eqs. (9)–(11) in Eq. (4), we find the
following n − 1 linear algebraic equations in the n + 1

unknowns for i = 0, 1, . . . , n:[
α

(
1
k
− ag(xi+1, t) − 3

xi+1h
+

1
xi−1h

)

− 2β
xih
− 1

h2

]
ui+1 +

[
4α

(
1

xi+1h
− 1

xi−1h

)

+ 2β
(

1
k
− ag(xi, t)

)
+

2
h2

]
ui

[
α

(
1
k
− ag(xi−1, t)

− 1
xi+1h

+
3

xi−1h

)
+

2β
xih
− 1

h2

]
ui−1

− 1
k

(
α f (xi+1) + 2β f (xi) + α f (xi−1)

)

− k
[
αh(xi+1) + 2βh(xi) + αh(xi−1)

]
= 0 . (12)

We need two more equations. The two end conditions
can be derived as follows:

u(0, t) = v(t) , u(1, t) = z(t) .

Substituting

c1 = α

(
1
k
− ag(xi−1, t) − 1

xi+1h
+

3
xi−1h

)
+

2β
xih
− 1

h2 ,

c2 = 4α
(

1
xi+1h

− 1
xi−1h

)
+ 2β

(
1
k
− ag(xi, t)

)
+

2
h2 ,

c3 = α

(
1
k
− ag(xi+1, t) − 3

xi+1h
+

1
xi−1h

)
− 2β

xih
− 1

h2 ,

we get these matrix forms

A =



1 0 0 0 . . . 0 0
c1 c2 c3 0 . . . 0 0
0 c1 c2 c3 0 . . . 0
. . . . . . .

. . . . . . .

. . . . . . .

0 . . . 0 0 c1 c2 c3
. . . . 0 0 1



,

B =



v(t)
1
k
[
α f (x2) + 2β f (x1) + α f (x0)

]
+ k

[
αh(x2) + 2βh(x1) + αh(x0)

]
1
k
[
α f (x3) + 2β f (x2) + α f (x1)

]
+ k

[
αh(x3) + 2βh(x2) + αh(x1)

]
.

.

.
1
k
[
α f (xn) + 2β f (xn−1) + α f (xn−2)

]
+ k

[
αh(xn) + 2βh(xn−1) + αh(xn−2)

]



,
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U = [u0, u1, . . . , un]′. (13)
Finally the approximate solution is obtained by solving
AU = B using Matlab 7.0.1.

4. Numerical example

In this section, we test our scheme on an example. We
consider the numerical results obtained by applying the
scheme discussed above to the following equation:

u′′ +
2
x

u′ −
(
6 + 4x2 − cos t

)
u = ut ,

0 < x < 1 , t > 0 ,

with initial condition u(x, 0) = ex2 , and boundary condi-
tions u(0, t) = esin t, ux(0, t) = 0. The exact solution of the
above problem is u(x, t) = ex2+sin t. The problem is solved
by using the scheme (13) in this paper. The maximum
absolute errors are listed in Table.

TABLE
Maximum absolute errors of the scheme (13).

n k = 0.1 k = 0.01 k = 0.001
11 2.3314 × 10−2 1.2794 × 10−2 6.8863 × 10−3

21 5.8066 × 10−3 4.1258 × 10−3 1.9090 × 10−3

41 3.1664 × 10−3 1.4558 × 10−3 7.8276 × 10−4

61 1.1522 × 10−3 7.8052 × 10−4 5.9650 × 10−4

121 8.0058 × 10−4 1.9542 × 10−4 5.2565 × 10−5

5. Conclusion

In this paper non-polynomial spline method is applied
for the numerical solution of the heat-like time dependent
Lane–Emden equation and the maximum absolute errors
have been shown in Table, which shows that this method
approximates the exact solution very well. The imple-
mentation of the present method is more computational
than the existing methods.
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