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The Smaller, the Better: From the Spider-Spinning
to Bubble-Electrospinning
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Nanobubble dynamics in the spider-spinning procedure is elucidated, and a theoretical model is established
to show why spider drag-line silk protein assemblies have extraordinary strength and toughness. Suggested by
the spider-spinning, a bubble electrospinning is investigated for mass production of nanofibers within diameters
20 nm. El Naschie’s E-infinity theory is a universal theory for nanotechnology. It is concluded that smaller is the
way to have excellent thermal and electric conductivity, in fact the smaller, the better.

PACS: 81.16.−c, 81.07.−b, 81.05.Lg

1. Introduction

In the last decade considerable work was invested in
developing new methods for producing nanofibers [1–3],
and the nanoeffect [4] enables nanofibers to have un-
usual strength, high surface energy, surface reactivity,
high thermal and electric conductivity, these characteris-
tics improve performance for many applications. A spider
silk [5, 6] is actually a nanofiber assembly consisting of
thousands of nanofibers, this distinct character can ex-
plain why it is of extraordinary strength and toughness.
A possible mechanism in the spider-spinning might be the
nanobubble dynamics [7], and the mechanism can be used
to produce nanofibers with remarkable strength through-
out using polymer bubbles [8–10]. This lecture will also
give a brief introduction to E-infinity nanoscience and
negative space.

2. Spider-spinning

Most natural spider silk is only 2.5 to 4 µm in diam-
eter. Actually a spider silk is an assembly of nanofibers
with diameter of about 20 nm, see Fig. 1. The assembly
is the key to explanating its excellent mechanical prop-
erties. The number of nanofibers in the assembly can
be estimated using the formulation: n = D2/d2, where
D is diameter of the spider silk, d is the average diam-
eter of a single nanofiber. The mechanical strength of
a single nanofiber can be expressed as τ = τ0 + kd−1/2,
where k is the fitting parameter (material constant), τ0
is the strength of the bulk material. Now considering
a micro silk with diameter of D and an assembly with
the same diameter consisting of nanofibers with diameter
of d, we predict (τdragline − τ0)/(τmicro − τ0) = (D/d)5/2. In
case D = 3 µm and d = 20 nm, the value is 2.7 × 105.
That means the spider silk is 5 orders of magnitude
higher than would be predicted from a single homoge-
neous micro silk. The finding shows it is a challenge

∗ e-mail: hejihuan@suda.edu.cn

to develop technologies capable of preparing nanofibers
within 20 nm, and the bubble-electrospinning can meet
this challenge. Nanobubbles are observed in Fig. 1 dur-
ing the spider spinning process and bubbles of polymer
solutions can be used for nanofiber fabrication with high
output [8–10], the minimal diameter reached as small as
20 nm [10].

Fig. 1. (a) Spider-spinning process reproduced with
the permission of Dennis Kunkel Microscopy, Inc. The
diameter of a single nanofiber is about 20 nm. (b) The
experimental setup of bubble electrospinning.

3. Bubble-electrospinning

We design a new approach, the bubble electrospinning
[8–10], to mimick the spider-spinning. The mechanism of
the bubble electrospinning process is deceptively simple:
in the absence of an electric field, the aerated solution
forms various bubbles on the surface. When an electric
field is present, it induces charges into the bubble sur-
face, and these quickly relax to the bubble surface. The
coupling of surface charge and the external electric field
creates a tangential stress, resulting in the deformation
of the small bubble into a protuberance-induced upward-
-directed reentrant jet. Once the electric field exceeds
the critical value needed to overcome the surface tension,
a fluid jet ejects from the apex of the conical bubble.
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The threshold voltage needed to overcome the surface
tension depends upon the size of the bubble and inlet air
pressure. The most fascinating character of the surface
tension of a bubble is independent of the properties of the
electrospun solutions, such as viscosity. This new tech-
nology is of critical importance for the new generation
of electrospinning, especially for the specialists in design,
manufacturing and using nanofibers.

4. Nanomechanics, is it chaotic or deterministic?

In view of el Naschie E-infinite theory [11], processes
at the nanoscale may possess entirely new physical and
chemical characteristics that result in properties that are
neither well described by those of a single elementary par-
ticle of the substance, nor by those of the bulk material.
In nanoscale, quantum-like phenomena occur. Accord-
ing to El Naschie [12, 13], nanotechnology is defined as a
technology applied in the grey area between classical me-
chanics and quantum mechanics. Classical mechanics is
the mechanics governing the motion of all the objects we
can see with our naked eye. This is a mechanics which
obeys deterministic laws (Newton laws) and which we
can control to a very far extent. By contrast, quantum
mechanics which is the mechanics controlling the motion
of things like the electron, the proton, the neutron and
the like is completely probabilistic.

Nanotechnology links both deterministic classic me-
chanics and chaotic quantum mechanics. There ought
to be a law controlling the change from a classical ob-
ject like a stone to a quantum object like an electron.
Somewhere between these two scales these changes hap-
pen, but this does not happen suddenly. There is a grey
area between these two scales which is neither classical
nor quantum. As E-infinity theory is valid for all scales
then it follows that it represents a strong candidate for a
theory dealing with this grey area.

Fig. 2. Nanomechanics is chaotic or deterministic?.

5. E-infinity nanoscience

El Naschie E-infinity theory [11] is valid for all scales.
In recent years there has been a flurry of original papers
published on the foundation and application of el Naschie
E-infinity Cantorian spacetime theory. The main appli-
cation of E-infinity theory shows miraculous exactness,
especially in predicting the theoretical coupling constants

and the mass spectrum of the standard model of elemen-
tary particles. E-infinity nanomechanics can be power-
fully applied to nanofibers [14–17].

In the theory of n-dimensional spaces, which we mean
by n-dimensional is simply assumed that we need n num-
bers representing n coordinates to fix the position of a
point in this space. In our classical space time, these
are the familiar triple x, y and z; while in relativity we
have a fourth coordinate or dimension, namely the time t.
The formal dimension in E-infinity theory, however, is
DF = ∞. The topological dimension in E-infinity theory
reads DT = 4. The average Hausdorff dimension of El
Naschie’s spacetime is DH = 4.23606 . . . That means Ein-
stein’s 4-dimensional spacetime is approximately valid,
and we predict that there might exist a plane-like string
with 2.23606 dimensions on an atom scale. To elucidate
this, we can obtain a general expression for boundary di-
mensions: D (boundary) = n−1, where n is the dimension
of the geometrical object for which we would like to know
the dimension of its boundary. When n = 3.23606, we
have a plane-like string. We can also extend this formula
below a point D = D(0)− 1 = 0− 1 = −1 where a negative
dimension is obtained. The procedure can continue and
we have a −3 space inside a point [18–22].

In an Euclidean space, the separation between two
points is measured by the distance between the two
points, and is always positive. In spacetime, the interval
between two events can be defined as s2 = ∆r2 − c2∆t2,
where c is the speed of light, and ∆t and ∆r denote dif-
ferences of the time and space coordinates, respectively,
between the events. A natural question then arises: why
does a negative sign appear before the temporal separa-
tion? It can be completely explained using the negative
space [23].

Fig. 3. Negative spacetime beyond the zero point.

The spatial separation in our 3+1 spacetime is always
positive while it becomes negative in a negative space. In
a negative spacetime, the interval between two events can
be simply obtained using vector addition as illustrated in
Fig. 3, that is −s2 = −∆r2 + c2∆t2; in its anti-space, we
recover the general expression.
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