Proceedings of the International Congress on Advances in Applied Physics and Materials Science, Antalya 2011

Synthesis, Characterization and Luminescence Properties of $Sr_3WO_6:Eu^{3+}$ Phosphor

F.M. EMEN^{a,*}, R. Altinkaya^b, S. Sonmez^b, and N. Kulcu^b

^aDepartment of Chemistry, Faculty of Arts and Science, Kirklareli University, TR 39300, Kirklareli, Turkey

^bDepartment of Chemistry, Faculty of Arts and Science, Mehmet Akif Ersoy University, TR 15100, Burdur, Turkey

 $Sr_3WO_6:Eu^{3+}$ phosphor was prepared at high temperature by solid state method. The phase structure of phosphor was characterized as double perovskite structure. The cell parameters of $Sr_3WO_6:Eu^{3+}$ were determined as a = 8.361 Å, b = 8.288 Å, c = 8.211 Å, $\alpha = \beta = \gamma = 89.78^{\circ}$. The luminescence properties were studied. The results revealed that Eu^{3+} ions show red emission about 616 nm.

PACS: 78.55.-m, 78.55.Hx, 61.43.Gt

1. Introduction

Tungstate crystals have been widely studied for their application as phosphors and scintillators. The most investigated compounds are $CaWO_4$ and $MgWO_4$ (as phosphors), as well as ZnWO₄, CdWO₄, and PbWO₄ (as scintillators) [1]. The intrinsic luminescence of tungstate crystals comes from annihilation of a self--trapped exciton, which forms the excited WO_4^{2-} and WO_6^{6-} complex for sheelite and wolframite crystal, respectively. Moreover, they may also effectively transfer energy to rare-earth ions Eu³⁺ generating red emission, thus becoming potential white-light phosphors. One of the approaches to obtain white light is to combine a UV LED/laser diode with blue, green, and red (BGR) phosphors [2, 3]. CaWO₄ was first used as luminescent material in 1896, and due to a possibility of self--activation, it became a high-efficiency material emitting blue light under X-ray, electron-beam, and UV irradiation. First investigations on the rare-earth-activated tungstates were reported in the sixties by Blasse, Bril and Borchardt [4, 5]. Crystals of potassium lanthanide double tungstates and molybdates were reported by Kaminskii to be efficient luminescent hosts for rare-earth and transition-metal ions [4]. The phonon properties of $KEu(MO_4)_2$ (M = Mo, W) were described by Macalik [6]. Very extensive studies of the optical properties of double rare-earth molybdates and tungstates of the composition $MRE(XO_4)_2$ (M = Cs, K, Rb; RE=rare earth; X=Mo, W) were also reported [7]. Promising luminescence properties of $Eu_2(WO_4)_3$ were well investigated by Kodaira et al. [8]. Sr_2ZnWO_6 has been widely studied mainly due to their unusual and interesting physical properties including ferroelectric, dielectric and magnetic properties, etc. [7, 9]. The photoluminescence properties of $Sr_{2-2x}Eu_xNa_xZnWO_6$ ($Sr_2ZnWO_6:Eu^{3+}$) were studied. Sr₂ZnWO₆:Eu³⁺ exhibits strong absorption in near ultraviolet region, and shows the bluish-green emission in visible region. After substituting Eu^{3+} ions for Sr^{2+} ions, the red emission is observed except for the bluish-green emission, and thus $Sr_{2-2x}Eu_xNa_xZnWO_6$ is a potential phosphor for the full-color LEDs [10].

To our knowledge, the photoluminescence properties of $\rm Sr_3WO_6:Eu^{3+}$ have not been studied. This report describes the synthesis, characterization and luminescence properties of $\rm Sr_3WO_6:Eu^{3+}$ phosphor.

2. Experimental

The $Sr_3WO_6:Eu^{3+}$ phosphor was prepared by using conventional ceramic method [7, 8]. The starting materials were $SrCO_3$, WO_3 and Eu_2O_3 . Proper amounts of the initial materials were weighted, and grounded in an agate mortar. The grounded powders were heated for 6 h at 1350 °C.

Phase purity was examined by using a Bruker, D8 Advance X-ray diffractometer (XRD) with Cu $K_{\alpha} = 1.54$ Å radiation. Photoluminescence (PL) measurements were carried out on a Varian Cary Eclipse Flourescence Spectrophotometer.

3. Results and discussion

The phase purity and phase structure of prepared sample were characterized by the X-ray powder diffraction (XRD) patterns. As is known, Sr₃WO₆ has a double perovskite structure [11]. The positions of diffraction peaks (see in Fig. 1) in the prepared sample are in accordance with those of the JCPDS No. 21-1193. The cell parameters of Sr₃WO₆:Eu³⁺ has been determined as a = 8.361 Å, b = 8.288 Å, c = 8.211 Å, $\alpha = \beta = \gamma = 89.78^{\circ}$.

The excitation spectra of Sr₃WO₆:Eu³⁺ is shown in Fig. 2. The excitation peaks at 307 nm and 393 nm are attributed to electronic transition of Eu³⁺ ions $(4f^6 \rightarrow 4f^55d^1)$.

The emission spectrum shows four emission peaks which are placed at 595, 616, 653, and 708 nm, respectively (Fig. 3). These peaks belong to ${}^5D_0 \rightarrow {}^7F_j$ $(j = 0 \div 4)$ transitions of Eu³⁺ ions (616 nm: ${}^5D \rightarrow {}^7F_2$

^{*} corresponding author; e-mail: femen1060gmail.com

Fig. 1. The XRD pattern of $Sr_3WO_6:Eu^{3+}$ phosphor (JCPDS File No: 21-1193).

Fig. 2. The excitation spectra of $Sr_3WO_6:Eu^{3+}$ phosphor.

and 595 nm: ${}^{5}D \rightarrow {}^{7}F_{1}$). Generally, the Eu³⁺ emission arises mainly from the ${}^{5}D_{0}$ excited level to the ${}^{7}F_{J}$ (J = 1, 2...) ground levels of the $4f^{6}$ configuration. The emission intensity corresponding to the electric dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is larger than that of magnetic dipole ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition. This result indicates that the symmetry around Eu³⁺ does not contain an inversion center [10].

The luminescence decay curve of $Sr_3WO_6:Eu^{3+}$ phosphor is shown in Fig. 4. The luminescence decay curve was measured by 616 nm emission wavelength intensity. The decay time was analysed by a curve fitting technique based on the following equation:

$$I = A \exp(-t/\tau), \tag{1}$$

where I is luminescence intensity, A is a constant, t is the time, τ is luminescence decay time for the exponential components, respectively.

Fig. 3. The emission spectra of $\rm Sr_3WO_6:Eu^{3+}$ phosphor.

The decay time value of $Sr_3WO_6:Eu^{3+}$ phosphor was determined as 6.59 ms and can be seen in Fig. 4.

Fig. 4. The luminescence decay curve of $Sr_3WO_6:Eu^{3+}$ phosphor.

Conclusion

Sr₃WO₆:Eu³⁺ phosphor has been prepared at high temperature by a solid-state reaction method. The crystal structure of Sr₃WO₆:Eu³⁺ phosphor has been determined as double perowskite structure with a = 8.361 Å, b = 8.288 Å, c = 8.211 Å, $\alpha = 89.78^{\circ}$. The excitation spectra of Sr₃WO₆:Eu³⁺ phosphor show that two excitation bands. The excitation bands at 307 and 393 nm are assigned to the electronic transition of Eu³⁺ ions. The emission spectra of Sr₃WO₆:Eu³⁺ phosphor exhibit four emission bands, which are attributed to the ⁵D₀ →⁷ F_j ($j = 0 \div 4$) transitions. The luminescence decay curve has been fitted by single exponential decay and the decay time is calculated as 6.59 ms.

References

- A.A. Blistanov, B.I. Zadneprovskii, M.A. Ivanov, V.V. Kochurikhin, V.S. Petrakov, I.O. Yakimova, *Phys. Prop. Cryst.* 50, 284 (2005).
- [2] A.A. Kaminskii, Laser Crystals their Physics, Properties, Springer, Berlin 1981.
- [3] V. Pankratov, L. Grigorjeva, D. Millers, S. Chernov, A.S. Voloshinovskii, J. Lumin. 94, 427 (2001).
- [3] A.A. Blistanov, B.I. Zadneprovski, M.A. Ivanov, V.V. Kochurikhin, V.S. Petrakov, I.O. Yakimova, *Crystallogr. Rep.* 50, 284 (2005).
- [4] G. Blasse, A. Bril, J. Chem. Phys. 45, 2350 (1966).
- [5] H.J. Borchardt, J. Chem. Phys. 39, 504 (1963).
- [6] L. Macalik, Pol. J. Chem.69, 286 (1995).
- [7] S.J. Patwe, S.N. Achary, M.D. Mathews, A.K. Tyagi, J. Alloys Comp. 390, 100 (2005).
- [8] C.A. Kodaira, H.F. Brito, O.L. Malta, O.A. Serra, *J. Lumin.* **101**, 11 (2003).
- [9] M. Gateshki, J.M. Igartua, E. Hernandez-Bocanegra, J. Phys. Condens. Matter 15, 6199 (2003).
- [10] X. Zhang, Z. Li, H. Zhang, S. Ouyanga, Z. Zoua, J. Alloys Comp. 469, L6 (2009).
- [11] G. King, A.M. Abakumov, J. Hadermann, A.M. Alekseeva, M.G. Rozova, T. Perkisas, P.M. Woodward, G.V. Tendeloo, E.V. Antipov, *Inorg. Chem.* 49, 6058 (2010).