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Effect of Dimple Potential on Ultraslow Light
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We investigate the propagation of ultraslow optical pulse in atomic Bose–Einstein condensate in a har-
monic trap decorated with a dimple potential. The role of dimple potential on the group velocity and time
delay is studied. Since we consider the interatomic scattering interactions, nonlinear Schrödinger equation or
the Gross–Pitaevskii equation is used in order to get the density profile of the atomic system. We find large
group delays of order 1 ms in an atomic Bose–Einstein condensate in a harmonic trap with a deep dimple potential.
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1. Introduction

The impressive demonstration of ultraslow light prop-
agation through an atomic Bose–Einstein condensate
(BEC) [1], utilizing electromagnetically induced trans-
parency (EIT) [2], has promised an appealing application
as a quantum memory [3]. Beside the ultracold atoms,
slow optical pulses have been observed in various media
like hot rubidium vapor [4]. In BECs, ultraslow opti-
cal pulse is delayed by the order of few microseconds [1].
Nevertheless large group delay of light was observed in
hot rubidium gases [4]. More recently, large controllable
time delays for such broadband pulses have been pro-
posed [5]. It has been theoretically and experimentally
shown that this delay time can be increased by increasing
the atomic density [6]. Moreover, dimple potential can
be used for increasing the time delay since the density
of Bose–Einstein condensate can be increased by means
of the dimple potentials [7]. Phase space density can be
enhanced by an arbitrary factor by using a small dimple
at the equilibrium point of the harmonic trapping poten-
tial [8]. Recently, such potentials are also proposed for
efficient loading and fast evaporative cooling to produce
large BECs [9].

If the atom–atom interactions cannot be neglected, the
structure of ground state of BEC is described by the
Gross–Pitaevskii equation [10]. If the scattering length as
is much less than the mean interparticle spacing, Gross–
Pitaevskii equation describes the zero-temperature prop-
erties of the non-uniform Bose gas.

In this paper, we investigate the one-dimensional prop-
agation of ultraslow optical pulse in an atomic Bose–
Einstein condensate in a harmonic trap decorated with
a dimple potential which is located at the center of har-
monic potential. We study the role of the dimple poten-
tial on the group velocity and the time delay. We model
the dimple potential by a Gaussian function which has
a narrow width value. Our calculations show that it is
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possible to observe large group delays up to 1 ms for
an optical pulse in an atomic Bose–Einstein condensate
which is trapped in harmonic potential decorated with a
deep dimple. The paper is organized as follows: first of
all the calculation of density profile of an atomic BEC
system is briefly reviewed. After then, propagation of ul-
traslow light under EIT system is discussed. We present
our calculations and discuss the results in result section.
Finally, we conclude in the last section.

2. Density profile of a trapped Bose gas
with dimple potential

The density profile of a Bose–Einstein condensate in
an external potential can be approximated very well by
means of the Thomas–Fermi approximation (TFA). The
density of ground state is given by the absolute square of
the ground state wave function: n(r) = |Ψ0(r)|2. The TFA
is often a good approximation to assume that the total ul-
tracold atomic density is in fact constant during the weak
light field propagation. On the issue of the dimple, the
validity of TFA depends on the length scale of the dimple.
If it is much larger than the healing length, then TFA
with the trap+dimple potential would work fine. The
healing length or coherence length of the BEC is given
by ξ = (1/(8πnas))1/2 [11]. Here n is the density of the
ultracold atomic medium and we can take it as the peak
density (n = ρ(0)) of the atomic system. We consider the
range of parameters in this work within the range of va-
lidity of TFA. One can approximate total density profile
of ultracold atomic system for 1D (ground state density)
by [11] ρ(z) = [µ − V(z)]/U0. Here U0 = 4π~2as/m where
m is atomic mass and as is the atomic s-wave scattering
length. µ is the chemical potential and can be evaluated
by using the TFA. The chemical potential is determined
from N =

∫
dzρ(z). We consider the dimple potential

which is modelled by a Gaussian function. We represent
one-dimensional harmonic potential with a dimple as

V(z) =
1
2

mω2
z z2 − V0 e

−
(

z√
2lz

)2

, (1)

where ωz is the trap frequency of the harmonic trap in

(141)
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the z direction, and V0 > 0 shows the strength (depth)

of the dimple trap (Vd = −V0 e
−
(

z√
2lz

)2

) located at z = 0.
It is possible to increase V0 from 0 to 1500–2000~ωz [12].
We use large values for the width of Gaussian function

lz (in G(z) = −V0 e
−
(

z√
2lz

)2

) compared to the extension of
BEC (see Sect. 4) in order to get an appropriate mod-
eling for the narrow dimple. If we apply a deep dimple
to the atomic condensate in a harmonic trap, we will get
the total number of atoms analytically by

N =

∫ √
2(µ+V0)

(mω2
z +

V0
l2z

)

0
dz

µ − 1
2

mω2
z + V0 e

−
(

z√
2lz

)2
/
U0. (2)

By taking the integral in Eq. (2), we find an analytical
expression for total number of atoms in terms of chemical
potential, interaction term, trap frequency and strength
of the dimple potential

N =
lz

3
√

2U0

(
V0 + mω2

z l2z
) 3

2

{
2
√
µ + V0

×
[
3µV0 + mω2

z l2z (2µ − V0)
]

+ 3V0

(
V0 + mω2

z l2z
)

×
√(

V0 + mω2
z l2z

)
π
}
erf


√

µ + V0

V0 + mω2
z l2z

. (3)

Here erf(x) is the error function. The error function
can be expanded in terms of x where x =

√
µ+V0

V0+mω2
z l2z
.

erf(x) = 1√
π
[2x − 2 x3

3 + x5

5 − x7

21 + O[x]9]. We insert
this expanded term into Eq. (3) and solve this equa-
tion numerically in order to get chemical potential. Do-
ing this we find the value of the chemical potential
µ = 1.0800 × 10−12 eV for m = 23 amu, ω = 200 Hz,
and V0 = 100~ωz = 6.582110−13 eV for N = 1 × 106.

3. Ultraslow light under EIT scheme

We consider an EIT model for a gas of N three-level
atoms interacting with two laser beams in Λ configura-
tion. The upper level is coupled to the lower levels via
a strong drive field with frequency ωc and a weak probe
field of frequency ωp. At resonance the absorption of the
probe field can be neglected. Weak probe beam propa-
gates along the condensate axis in the z direction. Prop-
agation of the ultraslow wave packet in one-dimensional
inhomogeneous atomic condensate can be described by
[13, 14]:

∂E
∂z

+ α(z)E +
1

vg(z)
∂E
∂t

+ ib2(z)
∂2E
∂t2 = 0 , (4)

where α(z) is the pulse attenuation factor; vg(z) is the
group velocity, and b2(z) is the group velocity dispersion.
The third order dispersion is found to be much smaller
and neglected [14]. EIT susceptibility [15] for the Bose–
Einstein condensate of atomic density ρ is expressed as
χ = ρχ1 with

χ1 =
|µ|2
ε0~

i
(

Γ2
2 − i∆

)
(

Γ2
2 − i∆

)(
Γ3
2 − i∆

)
+

Ω2
c

4

, (5)

where ∆ = ω − ω0 is the detuning of the probe field fre-
quency ω from the atomic resonance ω0. In Eq. (5), Ωc is
the Rabi frequency of the control field; µ is the dipole ma-
trix element for the probe transition. Γ2 and Γ3 denote
the dephasing rates of the atomic levels. The significant
position dependent group velocity for the optical pulse
propagation can be calculated from the susceptibility us-
ing the relation [13]:

1
vg

=
1
c
− π
λ

∂χ

∂ω

∣∣∣∣∣
ω0

. (6)

Here we take λ = 589 nm and ω31 = 2πc/λ. In Eq. (6)
group velocity depends on atomic density. As mentioned
in the introduction, the atomic density can be increased
by using a dimple potential [7]. An optical ultraslow
pulse propagates through the ultracold medium without
absorption due to the small imaginary part of the EIT
susceptibility at resonance.

4. Results and discussions

We consider a gas of N = 1 × 106 of Na atoms with
γ = 6 MHz, Γ3 = 0.5γ, Ωc = 0.5γ, and Γ2 = 6×103 Hz. We
take accessible experimentally parameters such as ωr =

350 Hz, ωz = 100 Hz, so that peak density ρ0 = 1.56×1020

1/m3. Equation (3) is solved numerically in order to
find the chemical potential. We assume that all atoms
are loaded into the harmonic potential with a dimple,
therefore effective length of the atomic medium becomes
smaller to the order 6 µm. The density of the condensate
is mainly controlled by the dimple potential for extremely
deep dimple. We present the change of µ as a function
of V0 in Fig. 1. As the strength of the dimple potential
increases, chemical potential becomes larger.

Fig. 1. The chemical potential µ vs. strength of dim-
ple potential for 23Na Bose–Einstein condensate of N =
1× 106 atoms. The squares show the chemical potential
which correspond to the strength of the dimple poten-
tial. Solid line represents the linear fitting. Dimple
potential (V0) is scaled by ~ωz. The parameters used
are M = 23 amu, as = 2.75 nm.

When light enters the condensate, its group speed ex-
hibits a dramatic slowdown. Here we consider resonant
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Fig. 2. Group velocity vs. strength of dimple potential
for ∆ = 0, propagating through a 23Na Bose–Einstein
condensate under EIT scheme for N = 1×106 atoms with
γ = 6 MHz, Γ3 = 0.5γ, Ωc = 0.5γ, and Γ2 = 6 × 103 Hz.
The solid line shows the peak value of the group velocity
vs. strength of the dimple potential. Dimple potential
(V0) is scaled by ~ωz.

probe pulse with ∆ = 0. Within the condensate region,
at zero temperatures, the group velocity remains approx-
imately at the same ultraslow value. Light rapidly accel-
erates to high speeds when it leaves the condensate at
the interface to thermal part. At extremely low temper-
atures, ρ0 saturates to the Thomas–Fermi density. At
zero temperature, vg0 can be calculated by ρ0 which was
converted from the Thomas–Fermi approximation. We
can ignore the spatial variations therefore density of the
atomic system can be taken as ρ(z = 0) = ρ0. In other
words, at low temperatures group velocity is determined
by ρ0 and group velocity decreases rapidly with the in-
creasing strength of the dimple for small dimple strengths
as seen in Fig. 2. However, group velocity decreases
slowly at deep dimple. One can interpret the decrease
in the rate of slow down as follows: as V0 becomes larger,
the dimple part predominates over the harmonic part of
the potential.

The group velocity is almost constant within the ul-
tracold atomic medium. In this case we ignore the small
contributions of modal and waveguide dispersions and de-
termine the group velocity, the same for both fractions,
by assuming a constant peak density of the condensate in
the material dispersion relation. So the delay time can
be calculated approximately by the time delay formula
tD = Lz/vg. Here tD is the time delay of the ultraslow
pulse, vg is the group velocity in the z direction and Lz
is the axial length of the condensate which can be taken
as: Lz = 2R. R is the Thomas–Fermi axial radius which
is given as

√
2(µ + V0)/(mω2

z ). vg is calculated by using
Eq. (6). Therefore we find large group delays of order
1 ms in an atomic Bose—Einstein condensate in a har-
monic trap with a deep dimple potential in which the
strength of the deep dimple potential is V0 = 1500~ωz.

5. Conclusion

We have explored the propagation of ultraslow light
through a Bose–Einstein condensate in a harmonic trap

with a dimple potential. We have investigated the ef-
fect of the dimple potential on the group velocity and
the time delay. As the strength of the dimple poten-
tial increases, group velocity becomes smaller. However,
at a critical value of the dimple group velocity becomes
approximately constant. As a result, time delay can be
increased by means of an atomic Bose–Einstein conden-
sate in a harmonic trap with a dimple potential. In other
words, large group delay can be obtained by using dimple
potential in ultracold atomic system.
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