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An Ising model with competing interactions has recently been studied extensively because of the appearance
of nontrivial magnetic orderings. In this paper, we study the phase diagrams for the Ising model on a Cayley tree
with competing nearest-neighbor interactions J and ternary prolonged interactions Jtp on a Cayley tree of arbitrary
order k and compare with the phase diagrams obtained in Uguz et al. and Vannimenus results for the Ising model
on a Cayley tree with competing nearest-neighbor interactions J and ternary prolonged interactions Jp. For some
values of k, we obtain phase diagrams of the model. We clarify the role of order k of the Cayley tree. We also plot
the variation of the wave vector with temperature.
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1. Introduction

The Ising model on a Cayley tree of order k with com-
peting interactions has recently been studied extensively
because of the appearance of nontrivial magnetic order-
ings [1] (see also Refs. in [2]). For many problems the
solution on a tree is much simpler than on a regular lat-
tice and is equivalent to the standard Bethe–Peierls the-
ory [3]. In recent years, investigation of phase diagrams
of the Ising model has attracted increased attention [4].
Inawashiro et al. [5] independently of Vannimenus inves-
tigated the Ising model with nearest-neighbors and pro-
longed next-nearest-neighbors interactions on a Cayley
tree, but they allowed Jp = J0, where J0 is the one-level
next-nearest-neighbor interaction on the Cayley tree of
order two. Later Mariz et al. [6] extended these results
assuming also existence of binary interaction J0 on the
Cayley tree of order 2. Recently Ganikhodjaev et al.
have obtained a general result of the Vannimenus work
on a Cayley tree of arbitrary finite order k [1]. This work
is a natural continuation of the study of the phase dia-
grams on Cayley tree which was investigated in [1, 2, 4]
and [7].

In this paper, using the methods in [1, 2] we study the
phase diagrams for the Ising model on a Cayley tree with
competing nearest-neighbor interactions J and ternary
prolonged interactions Jtp on a Cayley tree of arbitrary
order k and compare with the phase diagrams obtained
by Vannimenus [2] and Uguz et al. [1] results for Ising
model on a Cayley tree with competing nearest-neighbor
interaction J and prolonged next-nearest-neighbors in-

teractions Jp. For some values of k, we obtain phase
diagrams of the model. We clarify the role of order k of
the Cayley tree. We also plot the variation of the wave
vector with temperature.

2. The model and basic equations

A Cayley tree Γk of order k ≥ 1 is an infinite tree,
i.e., a graph without cycles with exactly k + 1 edges
issuing from each vertex. Let denote the Cayley tree
as Γk = (V,Λ), where V is the set of vertices of Γk, Λ

is the set of edges of Γk. For a fixed x0 ∈ V we set
Wn = {x ∈ V |d(x, x0) = n},

Vn = {x ∈ V |d(x, x0) ≤ n} =

n⋃

i=0

Wi

and Ln denotes the set of edges in Vn. The fixed vertex x0
is called the 0-th level and the vertices in Wn are called
the n-th level.

For the sake of simplicity we put |x| = d(x, x0), x ∈ V.
Two vertices x and y, x, y ∈ V are called nearest-neighbors
if there exists an edge l ∈ Λ connecting them, which is
denoted by l = 〈x, y〉. The distance d(x, y), x, y ∈ V,
on the Cayley tree Γk, is the number of edges in the
shortest path from x to y. Two vertices x, y ∈ V are
called the next-nearest-neighbors if d(x, y) = 2. The next-
-nearest-neighbor vertices x and y are called prolonged

next-nearest-neighbors if |x| , |y| and is denoted by 〉¤x, y〈.
The vertices x, y, z ∈ V are called ternary prolonged neigh-
bors, if x ∈ Wn, y ∈ Wn+1 and z ∈ Wn+2, where n ≥ 0. We
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will denote them by 〉 ¤
x, y, z〈 (see Ref. 8 for details). We

will consider ternary prolonged neighbors instead of pro-
longed next-nearest-neighbors studied in [2].

In this paper, we will consider a semi-infinite Bethe
lattice Γk

+ of order k, i.e. an infinite graph without cycles
with (k + 1) edges issuing from each vertex except for x0

which has only k edges.
For the Ising model with spin values in Φ = {−1, 1}, the

relevant Hamiltonian with competing nearest-neighbor
and prolonged ternary neighbor interactions has the form

H(σ) = −Jtp

∑

〉¤x,y,z〈

σ(x)σ(y)σ(z) − J1

∑

〈x,y〉
σ(x)σ(y) , (1)

where Jtp , J1 ∈ R are coupling constants.
In order to produce the recurrent equations, we con-

sider the relation of the partition function on Vn to
the partition function on subsets of Vn−1. Given the
initial conditions on V1, the recurrence equations in-
dicate how their influence propagates down the tree.

Let Z(n)

 i1, i2, . . . , ik
i0

 be the partition function on Vn

where the spin in the root x0 is i0 and the k spins in
the proceeding ones are i1, i2, . . . , ik. There are a priori
2k+1 different Z(n) to consider. It is reasonable, though,
to assume that the different branches are equivalent,
as is usually done for models on trees. We can show
that there are only four independent variables, namely

z1 = Z(n)

 +,+, . . . ,+

+

, z2 = Z(n)

 −,−, . . . ,−
+

, z3 =

Z(n)

 +,+, . . . ,+

−

, z4 = Z(n)

 −,−, . . . ,−−

. Then arbitrary

partial partition function Z(n)

 i1, i2, . . . , ik
i0

 is a combina-

tion of z1, z2, z3, z4. For instance, for σ(i0) = + we can
obtain the partial partition function as follows:

Z(n)
 i1, i2, . . . , ik

+

 = z
m
k

1 z
k−m

k
2 ,

where m, 0 ≤ m ≤ k is the number of spins up on first
level W1. Similarly, for σ(i0) = − we can obtain the par-
tial partition function as follows:

Z(n)
 i1, i2, . . . , ik

−

 = z
m
k

3 z
k−m

k
4 ,

where m, 0 ≤ m ≤ k is the number of spins up on first
level W1. Through the introduction of the new variables
ui = k

√
zi, we produce the following recurrence system:

u′1 = a(bu1 + b−1u2)k, u′2 = a−1(b−1u3 + bu4)k,

u′3 = a−1(b−1u1 + bu2)k, u′4 = a(bu3 + b−1u4)k,

where a = exp(J1/T ), b = exp(Jtp/T ) and primed variables
u′i correspond to the Z(n+1). The total partition function
is given in terms of (ui) by Z(n) = (u1 + u2)k + (u3 + u4)k.

For discussing the phase diagram, the following choice

of reduced variables is convenient:

x =
u2 + u3

u1 + u4
, y1 =

u1 − u4

u1 + u4
, y2 =

u2 − u3

u1 + u4
.

The variable x is just a measure of the frustration of the
nearest-neighbor bonds and is not an order parameter
like y1, y2 (see [2] for details). The relations now have the
following form:

x′ =
1

a2D

{[
x − y2 + b2(1 − y1)

]k

+
[
1 + y1 + b2(x + y2)

]k
}
,

y′1 =
1
D

{[
b2(1 + y1) + x + y2

]k

−
[
b2(x − y2) + 1 − y1

]k
}
,

y′2 =
1

a2D

{[
x − y2 + b2(1 − y1)

]k

−
[
1 + y1 + b2(x + y2)

]k
}
, (2)

where D = [x + y2 + b2(1 + y1)]k + [b2(x − y2) + 1 − y1]k.

3. Phase diagrams

For the sake of completeness we will restate the method
studied in [2]. It is necessary to know the broad fea-
tures of the phase. This can be achieved numerically
similar to [2]. The recursion relations (2) provide us
the numerically exact phase diagram in (−Jtp/J1,T/J1)
space. Assume (−Jtp/J1) = β, T/J1 = α and respectively
b = exp(−α−1β), a = exp(α−1). Starting from the following
initial conditions:

x(1) =
b2k + a2k

a[(ab)2k + 1]
,

y(1)
1 =

(ab)2k − 1
(ab)2k + 1

, y(1)
2 =

b2k − a2k

a2[(ab)2k + 1]
,

that corresponds to boundary condition σ̄(n)(V\Vn) ≡ 1,
one iterates the recurrence relations (2) and observes
their behavior after a large number of iterations. In the
simplest situation a fixed point (x∗, y∗1, y

∗
2) is reached. It

corresponds to a paramagnetic phase if y∗1 = 0, y∗2 = 0 or
to a ferromagnetic phase if y∗1, y

∗
2 , 0. From the formula of

average magnetization (3) follows that a situation where
y∗1, y

∗
2 , 0 but m = 0 cannot occur.

Secondary, the system may be periodic with period p,
where case p = 2 corresponds to antiferromagnetic phase
and case p = 4 corresponds to so-called antiphase. Fi-
nally, the system may remain aperiodic. The distinction
between a truly aperiodic case and one with a very long
period is difficult to make numerically. Below we con-
sider periodic phases with period p where p ≤ 12. All
periodic phases with period p > 12 and aperiodic phase
will be considered as modulated phase. The resultant
phase diagrams for some values of k are shown in Fig. 1.
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Fig. 1. Phase diagram of the model for k = 2, 3, 4,
respectively.

For J1 > 0 and k = 2 the phase diagram contains fer-
romagnetic phase and phase with period 3, that is new
(see [8]). The interesting part of phase diagram corre-
sponds to competing interactions (J1 < 0). In this case
the phase diagram is very rich and there are at least
four multicritical Lifshitz points, where two of them are
at zero temperature and other two are at nonzero tem-
perature. The main novelty lies in existing multicritical
Lifshitz points that are at nonzero temperature, since in
previous works [2] and [6] such point was at zero temper-
ature. Let us note that in this case paramagnetic phase
is absent.

In this paper we clarify the role of order k of the Cay-
ley tree. In [6] the authors assumed that effects for k = 2
should not be very different in higher (but finite) order k.
However from considerations above one can see that the
role of k is rather significant. Secondary, for isomorphism
between the system characterized by (J1, Jtp) and that
characterized by (−J1, Jtp) stated in [6], there are small
islands in the quadrant {β > 0, α < 0} where this isomor-
phism is broken, moreover the number of such islands
increases with increasing k. To investigate the nature of
such islands is rather a complete problem.

From consideration above we can suppose that for large
k a phase diagram has following structure: in first and
third quadrants we have ferromagnetic and P3 phase
only, in second quadrant we have ferromagnetic phase
only and in third quadrant we have mainly P3 phase and
a lot of islands of other phases.
Remark. Under numerical analysis provided above for

some values of parameters α and β we can reach very

large numbers such that a computer cannot operate with
them.

4. The average magnetization

In this section, we will study the behavior of the av-
erage magnetization in a period or the dynamic magne-
tization as a function of the reduced temperature. This
investigation leads us to characterize the nature of the
transition.

Fig. 2. Variation of the wave vector of the model for
k = 2 and (a) β = −0.45, (b) β = 0.47, respectively.

Fig. 3. Variation of the wave vector of the model for
k = 3 and β = −0.27.

Fig. 4. The average magnetization versus T/J of the
model for k = 4 and (a) β = 0.23, (b) β = −0.23, respec-
tively.

The average magnetization m for the n-th generation
is given by
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m =
(1 + x + y1 + y2)k − (1 + x − y1 − y2)k

(1 + x + y1 + y2)k + (1 + x − y1 − y2)k . (3)

Here we use numerical methods to study the behaviors of
the system given in Eq. (2). Lastly we consider the vari-
ation of the wave vector with temperature. A definition
of the wavevector that is convenient for numerical pur-
poses is q = limN → ∞

(
1
2

n
N

)
, where n is the number of times

the magnetization (3) changes sign during N successive
iterations [2]. The magnetization wave vector varies con-
tinuously with temperature and order of the Cayley tree.
Typical graphs of q versus T are drawn in Figs. 2–4.

In Fig. 1, for k = 2 the point (β, α) = (−0.45,−0.15)
is the multicritical Lifshitz one. The graphs of q versus
T/J1 are changing very fast around (−1.25, 0). In Fig. 1,
for k = 4 in the fourth region, there is modulated phase
and the island-shaped region is quite narrow. The anal-
ysis of such general phase diagrams is quite complicated.
Therefore, the Lyapunov exponents need to be examined
in detail. Also, for a more detailed study of variation of
the wavevector q versus T/J1, we need to locate the main
locking steps that should be present regarding to the gen-
eral theory [2]. Because the intervals are very narrow,
description of the distinction between long-periodic cy-
cles and calculations are difficult. The answer to the our
problem consists of nonlinear analysis techniques such as
the Lyapunov exponents associated with the trajectory
of the dynamical system (see [2]).

5. Conclusions

We have seen that ternary prolonged interaction has
strong effects on the phase diagrams. As the first ef-
fect, they shift the multicritical Lifshitz point from zero
temperature to a finite positive temperature. As the sec-
ond effect, the paramagnetic phase disappears at finite
temperature, while the Ising models in [1] and [2] do
not possess this property. As stated in [9], the stabil-

ity analysis for the ferromagnetic phase is more difficult
than the stability analysis for the paramagnetic phase
because the fixed point is not the same for the whole
phase. The stability analysis of the ferromagnetic phase
will be studied in detail in the future research paper.
As stated earlier analytical investigation on the stability
of fixed points (paramagnetic, ferromagnetic and modu-
lated) given in Eqs. (2) is planned to another publication.
Also, the transition lines between some new phases will
also be considered later on. For particular values of the
coupling constants and T , we have plotted the magneti-
zation graphs of the nonlinear-dynamical system.
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