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We develop a mathematical model for the analysis of conduction and valence band eigenenergy in quantum
dots. We apply the model to study the band structure calculations of low dimensional semiconductor nanostruc-
tures such as wurtzite AlN/GaN quantum dots in cylindrical coordinates in presence of applied magnetic field
along z-direction. We use a finite element method to solve the resulting model and to obtain eigenvalues and
wave functions of cylindrical quantum dots. We provide details of the methodology of solution and appropriate
boundary conditions. A special attention is given to the case of applied magnetic field along z-direction, we found
localized eigenstates and wave functions in the conduction and valence bands for which our results open new
possibilities for the design of the optoelectronics devices where the combination of electron–hole pairs can be used
as tuning parameters.
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1. Introduction

Nanostructures based on wide band gap semiconductor
materials such as AlN/GaN quantum dots have attracted
significant attention due to their current and potential
applications in optical, optoelectronic and electronic de-
vices, as well as bionanotechnology. The small, arbi-
trary shaped crystal structures can be realized to obtain
quantum size effects patterning techniques with the help
of electron beam lithography, optical lithography, X-ray
lithography and others. Self-assembled QDs which are
grown by the Stranski–Krastanov process are of special
interest because of their potential applications in QDs
lasers, light emitting diodes as qubits for quantum com-
putation and other applications [1–4].

A subject that has not been studied in detail in the
context of AlN/GaN quantum dots, however, is related
to localized eigenstates in valence band of wurtzite struc-
tures in cylindrical coordinates and this is the subject of
the present investigation. Our approach is closely re-
lated to that of [1] but differs in a way that we include
the external magnetic field along z-direction and derive
the equations for holes in the valence band in cylindrical
coordinates with a different procedure.

In this paper, we also present a numerical analysis of
the band structure of single AlN/GaN QDs under the
influence of applied magnetic field along z-direction. By
using the finite element method (FEM), we study the
eigenvalues and wave functions of the electrons in the
conduction and valence bands.

2. Mathematical model
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In this section, we develop a theoretical model of the
Hamiltonian, focusing on both the conduction and va-
lence band in cylindrical coordinates of quantum wurtzite
system. The detailed theoretical model for the conduc-
tion band of wurtzite structures in cylindrical coordinates
was explained in [4]. The results on the valence band
Hamiltonian in cylindrical coordinates will be published
elsewhere [5].

2.1. Conduction band Hamiltonian
in cylindrical coordinates

We consider the motion of the electron confined along
the z-direction in the presence of magnetic field oriented
along a direction perpendicular to the plane of two-
-dimensional electron gas (2DEG). Therefore the total
Hamiltonian of an electron including Rashba spin or-
bit interaction in cylindrical coordinates can be written
as [4]:
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where ωc = eB/m⊥e c is the cyclotron frequency, m⊥e and m‖e
are the effective masses, c is the velocity of light and B
is the magnetic field along z-direction. Also, αR is the
Rashba coefficient. Here we consider the experimentally
reported bulk material parameters g0 = 1.9885 for AlN

(85)
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and g0 = 1.9510 for GaN material from Ref. [6].

2.2. Valence band Hamiltonian in Cartesian coordinates

We start from the steady state Schrödinger equation
in the effective-mass approximation [7],

HF =
(
H0 + Hso + Hk + Hε

)
F = EF . (3)

Equation (3) was constructed by using the orthogonal
and normalized Bloch zone-center functions for the po-
tential well material, which are written as u = (ux, uy, uz).
The functions ux = ux(r) and uy = uy(r) transform as the
Cartesian coordinates x and y belonging to the represen-
tation Γ6 of the space group C6v, and uz = uz(r) transforms
as the coordinate z along c-axis of the wurtzite structure
in Γ1 notation [8]. The envelope function F = F(r) has
three components: F = (Fx, Fy, Fz)T, where T stands for

the transpose of a vector or operator, so that total wave
function Ψ = Ψ (r) can be written as

Ψ =
∑

j=x,y,z

u jF j = uF . (4)

The basis functions u are spinless, so each envelope func-
tion element F j act as a spinor. The Hamiltonian H0,Hso

and Hk in Eq. (3) can be written as [8]:
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where U6 = U(r) and U1 = U1(r) are the edges of the bands Γ6 and Γ1, respectively, which may contain an external
scalar potential. σi are the Puali matrices. L1, L2, M1,M2,N1 and N2 are the material parameters for the potential
well semiconductor, and ~k is the momentum operator. In Eq. (7), we choose the relation L1 − M1 = N1.
2.2.1. Valence band Hamiltonian in cylindrical coordinates

All Cartesian elements from Eq. (3) can be changed into cylindrical coordinates L1 − M1 = N1(r, φ, z) by allowing
x = r cos φ and y = r sin φ. Here we suppose the envelope functions ¯̄F = e i mφ f (r, z)/

√
2π. Here the eigenvalues m of the

operator of the z-component of the total angular momentum should be half-integer: m = ±1/2,±3/2, . . . The detailed
procedure for the conversion of the Hamiltonian in cylindrical coordinates will be published elsewhere [5]. Here we
present the main result. The Hamiltonian in cylindrical coordinates can be written as
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and the matrix m has the simple form

m =

 m − 1
2 0

0 m + 1
2

. (12)

The spin–orbit interaction Hamiltonian (6) transforms
into the Hamiltonian H̃so = S HsoS −1:

H̃so = i



0 −∆2σz ∆3σφ

−∆2σz 0 −∆3σr

−∆2σφ ∆2σr 0

, (13)

where σr = σx exp(iφσz) and σφ = σy exp(iφσz).

The Hamiltonian (13) depends on φ and does not com-
mute with the operator − i∇φ. To eliminate this depen-
dence, we note first that

e i φ2σzσr e− i φ2σz = σx , e i φ2σzσφ e− i φ2σz = σx , (14)

and then we construct a unitary transformation S̃ F̃ = ˜̃F,
where

S̃ =



e i φ2σz 0 0
0 e i φ2σz 0
0 0 e i φ2σz

. (15)
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2.2.2. Inclusion of external magnetic field
Consider an external magnetic field Bz applied along

the z-axis, which does not break the cylindrical symme-
try of the system. We use the symmetric gauge for the
vector potential A = (Ax, Ay, Az) = (−yB/2,−xB/2, 0) in
cylindrical coordinates, or A = (Ar, Aφ, Az) = (0, rBz/2, 0)
in cylindrical coordinates. The kinetic momentum oper-
ator is K = k + eA/(~c), where e is the electronic charge.
Also, we have to include the effective Pauli term in the
Hamiltonian of (3) as

HB =



1
2 g0µBBσz − i e
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0 1

2 g0µBBσz 0
i e

2~c QB 0 1
2 g0µBBσz

, (16)

where g0 = 2 is the free electron g-factor, µB is the Bohr
magneton, and Q is a material specific parameter [9]. In a
similar way that was discussed in the previous section, in
the presence of external magnetic field along z-direction,
one can write the Hamiltonian in cylindrical coordinates
as
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where h11, h22 and h33 are given by (9)–(11) and
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3. Results and discussions
We consider the GaN as a quantum dot embedded into

the host material of AlN. We apply the Dirichlet bound-
ary conditions far away from the quantum dot. In other
words, the electron wave function is zero sufficiently far
away from the quantum dot. Further, we consider the
electron wave function to be continuous at the center and
at the interface between AlN/GaN quantum dot and we
apply Neumann boundary condition at the center and at
the interface of the AlN/GaN quantum dot. We found
the localized eigenstates and eigenvalues in the conduc-
tion and valence bands of wurtzite AlN/GaN quantum
dot. The electron and hole eigenstates found in the con-
duction and valence bands recombine each other in the
form of electron–hole pairs and produce photons. These
photons have wide area of applications in light emitting
diodes, semiconductor lasers, and others.

In Fig. 1, we plotted the conduction and valence band
diagram of AlN/GaN quantum dot along z-direction by
choosing the appropriate band discontinuity and band
offset at the interface of the AlN/GaN heterojunction.
We adopted the finite element method to solve the cou-
pled Schrödinger Eq. (1) for an electron in cylindrical

Fig. 1. (a) Flat conduction and valence band diagram
of AlN/GaN quantum dot along z-direction, (b) ground
state eigenvalues and wave functions of electron in the
flat conduction band, (c) first excited state eigenvalues
and wave functions of electron in the flat conduction
band, (d) ground state eigenvalues and wave functions
of holes in the flat valence band, (e) first excited state
eigenvalues and wave functions of holes in the flat va-
lence band.

coordinates in the flat conduction band. The eigenvalues
and the wave functions of the ground and first excited
states of the electron are shown in Fig. 1a and b. Here we
estimated the ground and first excited states eigenvalues
in the conduction band as 4.986082 eV and 5.026306 eV,
respectively. The ground and first excited states of the
electron in the valence band have been found by solving
the corresponding eigenvalue problem for the Hamilto-
nian (1). The ground and first excited states of the elec-
tron wave functions are shown in Fig. 1d and e. Here,
we estimated the ground and first excited states eigenval-
ues of the electron as 1.385091 eV and 1.328608 eV. The
electron found in the localized eigenstates at 4.986082 eV
in the conduction band has an opportunity to recom-
bine with the hole found in the localized eigenstates at
1.385091 eV in the valence band. The recombination of
electron–hole pair generates photons which are funda-
mental to the operation of many optoelectronic semicon-
ductor devices, such as photodiodes, light emitting diodes
(LEDs) and laser diode.

4. Conclusions

In this paper, we have developed a mathematical model
for the valence band of a quantum dot in cylindrical coor-
dinates with wurtzite symmetry in the presence of exter-
nal magnetic field along z-direction. We solved the cou-
pled Schrödinger equation in the conduction and valence
bands separately and found the localized eigenstates and
wave functions. The localized eigenstates for electron and
hole in their corresponding bands will recombine to form
electon–hole pairs. The photons generated by electron–
hole pairs during the recombination process has wide ap-
plications for the optoelectronic devices.
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