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In this paper, Hamiltonian approach is extended to investigate coupled nonlinear multi-degree-of-freedom
oscillatory systems. At the beginning of the study, basic principles of Hamiltonian approach are provided for
multiple coupled oscillators. In the next section, the amplitude–frequency relation for the two-degree-of-freedom
nonlinear mechanical systems is obtained via Hamiltonian approach. The natural frequency expression is compared
to show the agreement between the present and published results. Additionally, the approximate and numerical
periodic solutions are plotted.
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1. Introduction

A vibrating system can be generally modeled as a
1-degree-of-freedom (1-DOF) system, which can give a
good explanation of its essential dynamic characteristics;
however, sometimes multi-degree-of-freedom (m-DOF)
model has to be used to outline the complex nonlinear
phenomenon [1].

A great deal of work has been devoted to the 1-DOF
nonlinear oscillatory systems. In general an exact ana-
lytical solution to a given nonlinear problem is difficult,
sometimes impossible. Plenty of approximate techniques
have appeared in open literature, among which one can
include the homotopy perturbation method [2], max-min
approach [3], energy balance method [4].

Recently 2-DOF oscillation systems have been inves-
tigated [5–7]. In all studies the system reduces to one
decoupled equation and one coupled equation by using a
transformation. But for a general case of a mass and a
spring system, such treatment becomes invalid even for
a simple 2-DOF system. In order to obtain the closed
form solutions of coupled nonlinear m-DOF oscillatory
systems, Hamiltonian approach is implemented in this
paper.

This study is an extension of the authors’ previous
work [8] which has focused on the application of vari-
ational approach to the nonlinear systems. At the be-
ginning of the study, the basic principles of Hamiltonian
approach are supplied for multiple coupled oscillators.
In the following section, a nonlinear mechanical system
(2-DOF) is considered as an application. The nonlin-
ear natural frequencies are derived via Hamiltonian ap-
proach. The expressions are compared to show the agree-
ment between the present and published results. Ad-
ditionally the approximate and numerical periodic solu-
tions are plotted.
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2. Hamiltonian approach for nonlinear systems

Let us consider the motion of a multiple coupled oscil-
lator

miδi j ẍ j + fi(x1, x2, . . . , xn) = 0 , i, j = 1, 2, . . . , n , (1)
where δi j is the Kronecker delta.

Hamiltonian approach, proposed by He [9] for nonlin-
ear oscillators is extended for the multiple coupled non-
linear oscillators. Thereby Hamiltonian of Eq. (1) can be
written as follows:

H(x1, x2, . . . , xn) =
1
2

n∑

i=1

mi ẋ2
j + F(x1, x2, . . . , xn) , (2)

where T (= 2π/ω) is the period of the nonlinear sys-
tem and ∂F/∂xi = fi. In Eq. (2) the kinetic energy (E)
and potential energy (T ) can be respectively expressed
as E = 1

2
∑n

i=1 mi ẋ2
j and T = F(x1, x2, . . . , xn).

Throughout the oscillation since the system is conser-
vative, the total energy remains unchanged during the
motion; Hamiltonian of the oscillator becomes a constant
value, H = E + T = H0. A new function Ĥ(u) is defined
by integrating Eq. (2) over the quarter period

Ĥ(x1, x2, . . . , xn)=

∫ T/4

0

1
2


n∑

i=1

mi ẋ2
j + F(x1, x2, . . . , xn)

dt

=
T
4

H0 . (3)

We assume that the approximate solution for the dis-
placements can be expressed as

xi(t) = Ai cosωt, (4)
where Ai and ω are the amplitudes and the frequency of
the oscillation. Inserting Eq. (4) into (3) results in

Ĥ(A1, A2, . . . , AN , ω) =

∫ T

0

[
1
2
ω2 sin2(ωt)

N∑

i=1

miAi

+ F(A1 cosωt, A2 cosωt, . . . , AN cosωt)
]
dt . (5)

(47)
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Frequency–amplitude relation is obtained by setting
∂

∂Ai

[
∂Ĥ
∂T

]
= 0 or

∂

∂Ai

[
∂Ĥ

∂(1/ω)

]
= 0 . (6)

3. Applications

In this section an example for the coupled nonlinear
oscillators will be given to show the efficiency of the ex-
tended Hamiltonian approach previously discussed. The
sketch of a 2-DOF mass–spring system is given in Fig. 1.
In this example the system consists of equal masses of m
moving in a frictionless ground and connected to three
linear and nonlinear springs. The coefficients of linear
springs are k1, k2, while the nonlinear spring coefficient
is denoted by kN

1 and kN
2 . The absolute displacements of

equal masses m are represented by the functions x1(t) and
x2(t), respectively.

Fig. 1. 2-DOF mass–spring system.

The Hamiltonian of the system is easily established as

Ĥ(x1, x2) =
1
2

∫ T/4

0

[
mẋ2

1 + mẋ2
2 + k1x2

1 +
1
2

kN
1 x4

1

+k2(x1 − x2)2 +
1
2

kN
2 (x1 − x2)4 + k1x2

2 +
1
2

kN
1 x4

2

]
dt . (7)

Assuming the first approximate solutions in the form of
x1(t) = A1 cosωt , (8a)

x2(t) = (A1 − A) cosωt . (8b)

Substituting Eq. (8) into (7) leads to

Ĥ(A, A1, ω) =
1
2

∫ T/4

0

{
mω2

[
A2

1 + (A1 − A)2
]

× sin2 ωt +
1
2

A2
1k1 cos2 ωt +

1
2

A4
1kN

1 cos4 ωt

+ k2[A1 cosωt − (A1 − A) cosωt]2

+
1
2

kN
2 [A1 cosωt − (A1 − A) cosωt]4

+ (A1 −A)2k1 cos2 ωt +
1
2

(A1 −A)4kN
1 cos4 ωt

}
dt . (9)

Setting ∂
∂A

[
∂Ĥ

∂(1/ω)

]
= 0 and ∂

∂A1

[
∂Ĥ

∂(1/ω)

]
= 0, we have two

equations as follows:
4A1k1 + 9A2A1kN

1 + 3A3
1kN

1 − 3A3
(
kN

1 + kN
2

)
− 4A1mω2

−A
(
4k1 + 4k2 + 9A2

1kN
1 − 4mω2

)
= 0 , (10a)

(A − 2A1)
(
4k1 + 3A2kN

1 − 3AA1kN
1 + 3A2

1kN
1

− 4mω2
)

= 0 . (10b)
The amplitude–frequency relation can be derived by the

use of Eqs. (10a), (10b) as follows:

ω(A) =
1
4

√
16k1 + 32k2 + 24A2kN

2 + 3A2kN
1

m
. (11)

The special cases given below are verified with the recent
study of Ref. [6]:

(i) For k1 = 0 and kN
1 = 0⇒ ω(A) =

√
4k2+3A2kN

2
2m ;

(ii) For kN
1 = 0⇒ ω(A) =

√
2k1+4k2+3A2kN

2
2m .

To obtain a more accurate result x1(t) and x2(t) are de-
fined as follows:

x1(t) = A3 cos(ω2t) + (A2 − A3) cos(3ω2t) , (12a)

x2(t) = A5 cos(ω2t) + (A4 − A5) cos(3ω2t) . (12b)
For the second order approximation contrary to the first
order approximation, periodic solutions could not be ex-
pressed in closed forms. Instead the results for both ap-
proximations will be demonstrated with the numerical
results (standard 4th order Runge–Kutta). Thus using
the numerical values m = 1, k1 = 7, k2 = 2, kN

1 = 1, kN
2 = 5

and A = 10, the periodic functions x1(t) and x2(t) are
evaluated and plotted in Fig. 2.

Fig. 2. Approximate and numerical periodic solutions
for the system.

In this figure, three different lines are used. Those
solid, dot-dashed and dashed represent the results of nu-
merical, first and second order Hamiltonian approach
methods, respectively. For both displacements, the re-
sults of the second order approximation overlap with the
ones of numerical solution.

4. Conclusion

In this paper, Hamiltonian approach is extended for
solving the motion of nonlinear m-DOF oscillation sys-
tems. One example has been presented and discussed.
The closed form of the amplitude–frequency relations
of 2-DOF system is presented and compared to the ex-
pressions from literature. The results of special cases of
2-DOF system perfectly match with the published re-
sults. Moreover, the results are refined by second order
approximation.
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