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In this study, a mathematically polymeric insulator material is modeled which is used as a solid insulator
in the industry. ASTM D 2303 in inclined plane test method is utilized in order to observe mechanical effect of
vibration. The materials have different deformation times before they are fatigued or not fatigued. Our goal is
the mathematical model which has materials at progressive times.
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1. Introduction

In electric industry, cheaper and safer transfer of en-
ergy is an important issue. Higher voltage is required in
order to transport a big amount of energy. The prob-
lems facing high voltage are discharge events as well as
safety and environmental factors. In industry, solid insu-
lators are employed more often than gas or liquid ones, as
they are more resistant in comparison with gas and liq-
uid. A good dielectric material has to possess inevitably,
a puncture, low dielectric loss, high mechanical crucible,
solidity, moisture and resistance to chemical interaction
and temperature. It is also expected to be protected
against environmental conditions.

We have inspected aging process in two main ques-
tions. Firstly, all the samples have the same conditions,
and outer conditions are fixed. Samples are exposed to
mechanical vibration with the help of a vibration engine.
As the vibration velocity changes, aging effect on the
polymeric sample test is inspected. Secondly, all samples
are produced under the same conditions and are fatigued
before getting age analysis. Corruption is observed in the
upcoming fatigue process for pre-experimental fatigue.
Now we can introduce our mathematical model concern-
ing aging process in polymeric insulator material.

Stochastic ordinary differential equations (SODEs) of-
fer a convenient and tractable way of modeling the dy-
namics of many stochastic systems including cracking, fa-
tigue and engineering. One of the most important steps
in the modeling process is parameter estimation. How-
ever, most data are observed at discrete time frequencies
whereas SODEs are almost continuous processes. This
introduces “discretization-bias” into estimates which are
difficult to eliminate.

An equivalent driving force (EDF) model is proposed
for the correlation and prediction of crack growth un-

der different stress ratio values R. This force defines
a completely-reversed stress intensity range that is ex-
pected to yield the same crack growth rate as a given
stress intensity range ∆K and stress ratio R [1]. Constitu-
tive equations for the description of failure for cyclic load-
ing of an adhesive interface have been developed within
the framework of the cohesive surface methodology [2].

In this study, fatigue crack growth rate in mixed-mode
overload (modes I and II) induced a retardation zone
that has been predicted by using an “exponential model”.
The important parameter of this model is the specific
growth rate. This has been correlated with various crack
driving parameters such as stress intensity factor range,
maximum stress intensity factor, and equivalent stress
intensity factor, as well as material properties such as
modulus of elasticity and yield stress [3].

To study the fatigue crack growth problems and to
emphasize the variability of the growth curves in addition
to their average growth trend, three stochastic fatigue
crack growth models are presented [4].

2. Model-fatigue analysis by stochastic
differential equation

To illustrate various aspects of the simulation of a time
discrete approximation of an Ito process we shall examine
a simple example in some detail. We shall consider the
Ito process X = {Xt, t ≥ 0} satisfying the linear stochastic
differential equation

dXt = aXt dt + bXt dWt (1)

for t ∈ [t0,T ] with the initial value X0 ∈ <1. This is an
Ito process with drift a(t, x) = ax and diffusion coefficient
b(t, x) = bx. We know that Eq. (1) has the explicit solu-
tion

(36)
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Xt = X0 exp
((

a − 1
2

b2
)
t + bWt

)
(2)

for t ∈ [t0,T ] and the given Wiener process W =

{Wt, t ≥ 0} [5]. Knowing the solution (2) explicitly gives
us the possibility of comparing the Euler approximation
with the exact solution and calculating the error. Consis-
tent estimators for α and β are given by Tsay [6], among
many others.

3. Application

Our data is categorized within low, medium and high
vibration levels fracture times and each of these cate-
gories is jointly handled. The growth model can be con-
sidered as the solution of the stochastic differential equa-
tion. In this case, the model explains 88% of the variance
in fracture time. F test (P < 0.001) indicates that the
independent variable is significantly different from zero.
So, we propose our model as follows:

ln y = 0.01x + 3.224 . (3)

This growth model is obtained for the first three levels
(low, medium and high). When the same data are ap-
plied to nonlinear regression methods, we find that the
magnitude of coefficients are a = 3.22 and b = 0.01.

TABLE I

Parameter estimates (for low, medium, high levels).

Parameter Estimate Std. error
95% Confidence interval

Lower bound Upper bound

a 3.224 0.025 3.170 3.279
b 0.010 0.001 0.008 0.012

Correlation of parameter estimates is −0.897.

TABLE II
ANOVA (for low, medium, and high levels).

Source Sum of squares d f Mean squares
regression 14664.743 2 7332.371
residual 23.286 13 1.791
uncorrected total 14688.029 15

TABLE III
Parameter estimates (fatigue level).

Parameter Estimate Std. error
95% Confidence interval

Lower bound Upper bound

a 4.601 1.568 −0.390 9.591
b −0.064 0.046 −0.210 0.082

The nonlinear regression model can be considered as a
private solution of black holes (geometric Brownian) dif-
ferential equation. Then the private solution is

y = ea+bx. (4)

In a nonlinear regression model, the magnitude of coef-
ficients are a = 3.22 and b = 0.01. Table I shows both
parameter estimates and confidence intervals for the non-
linear regression model.

TABLE IV
ANOVA (fatigue level).

Source Sum of squares d f Mean squares
regression 598.581 2 299.290
residual 24.924 3 8.308
uncorrected total 623.505 5

TABLE V

Simulation of coefficient of the Brownian
differential equation.

Iteration (N) θ1 θ2

1000 1.550443 3.211485
5000 0.010000 3.222309
10000 0.010000 3.235877

Table II demonstrates that both models fit and how
much of the residuals are explained by the variables in
the nonlinear regression model. It can be observed from
Table II that the sum of square (14664.743) and mean
square residuals (7332.371) explained by the nonlinear
regression model are significantly higher than the unex-
plained part (23.286). Accordingly, there is no reason to
reject the model.

When we apply nonlinear regression estimation to
fatigue data, we get the parameter estimates as fol-
lows. Table III demonstrates appropriate parameters
and Table IV shows the appropriateness of the regres-
sion model of these data.

Since the values a and b that correspond to this so-
lution are known, the simulation of the Ito differential
equation could be performed. Figure 1 introduces time-
-vibration trajectories of the performed simulation.

Fig. 1. (a) Geometric Brownian motion trajectory for
b = 0.01, a = 3.22; (b) geometric Brownian motion tra-
jectory for b = −0.064, a = 4.601.

The independent variable analyzed in the previous lit-
erature was the fracture size based on fatigue data and
the Paris–Erdogan modeling. However, different from
previous literature, we seek to understand the role of vi-
brations on fracture size by using nonlinear regression
and the Ito differential equations. Scattered data are
seen in Fig. 2 and simulation of coefficient of the Brown-
ian differential equation is presented in Table V.
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Fig. 2. (a) Graph of model for data; (b) graph of model
for fatigue data.

In the simulation above, we empirically show that the
convergence of the maximum likelihood estimators to the
true parameter values as N increases.

4. Conclusion

In this study, the relationship between vibration pa-
rameters and duration of use of insulators has been inves-
tigated. We have conducted a laboratory experiment in
which polymeric insulators were exposed to low, medium,

and high vibration levels. The result of such an exposure
indicates that as the degree of vibration exposure to such
insulators increases, the hazard crack rates of polymeric
insulators decreases, hence, survival rate of such insu-
lators increases. On the other hand, we have observed
the inverse relationship between vibration exposure and
duration of crack rates for fatigue data. Such inverse re-
lationship is due to microcracks found in the polymeric
insulators.
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