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The paper aims to describe the potential use of phase trajectory for damage detection of structural
components. The attractor of the examined trajectory is a static equilibrium point of the element being
diagnosed. Two di�erent damage indices are proposed to evaluate the severity of damage in the diagnosed
component. The �rst one refers to distance between a point on a trajectory and the point which is the
attractor of the trajectory. The other one relates to linearity of the Poincaré map. E�ectiveness of the proposed
method was evaluated on: a simple model with two degrees of freedom, data from the �nite element method
model of a cantilever beam with a crack, and experimental data for a cracked plate. With the proposed
method, the damage can be quickly and e�ectively detected. By comparing the current trajectory with that
from the previous diagnostic test, it is possible to establish if the nature of crack is either propagating or stationary.

PACS: 43.40.Le, 46.40.−f

1. Introduction

Owners and users of building, mechanical, aviation,
hydro-engineering or cosmic structures take every e�ort
to prolong the lifetime of such structures, and maintain
the operating safety at the same time. On the other
hand, the safety of numerous systems is crucial: damage
of structures (building, planes, bridges or power facili-
ties) would have disastrous consequences in terms of the
number of casualties, extent of environmental harm or
property loss.
Defects (faults, damage) are unavoidable in materials

and structures, and their presence can reduce the mass,
rigidity, strength and safety of such structures. When
such structures are in service, the fault raises to the crit-
ical values, leading to disintegration of a component in
the end.
On the one hand, occurrence of a macrocrack causes

discontinuity of the material, which can be detected with
ultrasonic, magnetic and eddy current testing or, in most
cases, by visual inspection [1]. On the other hand, the
faults change the physical properties of the structure be-
ing studied and their appearance is re�ected in variations
of their dynamic characteristics. Such property is the
basis for vibroacoustic diagnostics which allows to de-
tect local faults by measuring global values. Symptoms
of damage are sought in variations of, among others: fre-
quency of the natural vibration [2�8], modal shape [9�14],
damping coe�cients [15, 16], forced vibration amplitudes
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[17�22], antiresonance frequencies [23, 24], higher or-
der statistics [25�28] or scaleogram (wavelet transform)
[29�31].
Observation and analysis of vibroacoustic processes

can be used for detection, localization and quanti�cation
of damage in locations which are di�cult to access or
even inaccessible [32], and with the possibility to detect
such damage quickly and at relatively low cost, the vibro-
acoustic method has become an e�ective and frequently
used nondestructive testing (NDT) technique applied to
determine the technical condition of structures.
The present paper aims to describe the potential use of

phase trajectory, the attractor of which is a static equi-
librium point of the element being diagnosed (static de-
�ection of the component).
The e�ectiveness of the proposed method was, at

�rst, tested on a simple model with two degrees of free-
dom (dofs). The damage was modelled by simultaneous
changing the sti�ness and damping coe�cients connect-
ing the dofs. Two di�erent damage indices are proposed
to assess the severity of damage.
After testing the e�ectiveness of the proposed method

on a simple model with two dofs, it was tested with the
�nite element method (FEM) model data of a cantilever
beam with a crack and using experimental data recorded
for an aluminium plate cracked across the material.
With the diagnostic method based on quantitative

analysis of the phase trajectory, the damage can be de-
tected quickly and e�ectively. By comparison the current
trajectory with that of the previous diagnostic test, it is
possible to establish if the nature of crack is either prop-
agating or stationary.
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2. System dynamics in the phase space

Phase space of a dynamic system is the mathematical
space of orthogonal coordinates representing all variables
essential to determine temporary state of the system.
Each dynamic system can be described with a system
of di�erential equations:

dx

dt
= f(x(t)) + u(t), (1)

where x � state vector, u(t) � input (forcing) vector.
Unfortunately, for the most of dynamic systems, com-

plete information regarding the velocity and displace-
ment of all points (degrees of freedom) is not available.
Exhaustive description of the system in phase space

can be obtained also if system attractors are known. The
attractor is a certain set in the phase space to which tra-
jectories beginning in various areas of the phase space
evolve after a long enough time, i.e. trajectories for vari-
ous initial conditions.
The attractor can be a point, a closed curve (limit

cycle), a manifold (e.g. limit torus) or a fractal (strange
attractor). Attractor is one of the key terms used in chaos
theory [33]. Each attractor has its attraction area, known
as the attraction basin (a set of such initial conditions for
which the trajectory evolves to the attractor).
The potential use of the limit cycle quantitative anal-

ysis for a structural components diagnostics has been de-
scribed in other papers of the present author, e.g. [34�36]
and Trenda�lova [37]. The present paper focuses on the
potential uses of the quantitative analysis of a trajectory
in case when the attractor is a point.
Phase trajectory in phase space is a multidimensional

curve (each degree of freedom is represented as its sep-
arate dimension). With no harm to the general nature
of consideration, trajectory projection on certain plane,
formed by two perpendicular axes of the phase space, can
be analysed [33, 38].
In the next section various coordinates of axes form-

ing the projection plane for the phase trajectory are de-
scribed. In other words, those are the variables (e.g.
acceleration, velocity, displacement) of one point of the
component or structure being diagnosed, which can be
used for determining the trajectory projection plane.

3. Methods for determining trajectory

The most apparent coordinates of the plane on which
the phase trajectory can be projected are used for topo-
logical analysis of vibrations: these are the velocity and
displacement. Determining a trajectory on such plane
involves the determination with an accelerometer, a time
series of vibration acceleration and integrating it after-
wards. Each point on the trajectory has the coordinates
corresponding to displacement and velocity values on the
horizontal and vertical axis, respectively. The values are
determined in the same moment of time.
In lieu of velocity as the function of displacement,

the acceleration as the function of displacement can be

analysed or the acceleration as the function of veloc-
ity. In addition to obvious bene�ts from a smaller num-
ber of the time series integration (time and cost of cal-
culations), another advantage of the trajectory of the
velocity�acceleration coordinates is that it can be deter-
mined by measuring directly on the tested structure. To
carry out the tests, the VS80 Brüel & Kjær velocity sen-
sor and PCB 356A16 PCB Piezotronics accelerometer
were used.
Other method for constructing projection plane,

known from chaos theory, is the use of the method of
delays. Using that method, it is su�cient to determine
one time series (e.g. vibration acceleration) and, based
on that, determine the phase space including the plane
sought, on which the phase trajectory is projected.
The reconstruction of phase space is based on the fact

that the time series contains some information of non-
-observed states of the system generating it (component
being diagnosed) and dynamics of such states.
Reconstruction of a trajectory based on a single time

series requires formation of additional variables. The
Takens theorem [38] is useful while seeking new variables,
whereby each point in the phase space a(n) is represented
by a series of subsequent values of the time series

a(n) =
[
y(n), y(n+ τ), . . . , y(n+ (m− 1)τ)

]
,

a(n+ 1) =
[
y(n+ 1), y(n+ 1 + τ),

. . . , y(n+ 1 + (m− 1)τ)
]
, (2)

where m � dimension of the phase space, τ � time
delay.
Reconstruction of the space with the method of delays

requires its dimensional parameter m and the time delay
τ to be adopted a priori.
The most commonly used procedure for determination

of the space dimension is the false nearest neighbours
method. The method is based on the fact that for su�-
ciently large m, in the reconstructed trajectory the pro-
portions of distance between states no longer change sig-
ni�cantly i.e. close states in m-dimensional space remain
close, also after the addition of m+ 1 coordinate 390].
Due to the use (for diagnostics purposes) only the pro-

jection of as-reconstructed trajectory on the plane, de-
termined by the coordinates, e.g. y(n) and y(n+ τ), the
knowledge of the dimension of phase space is dispensable.
The value of the time delay τ can be determined as

a result of the autocorrelation function analysis, as the
moment in which the function gets the zero value for
the �rst time. A major drawback of the autocorrelation
based method is an assumption of linear dependences be-
tween observations [40]. The criterion for selection of de-
lay, which also uses non-linear dependences, is the mutual
information method. The amount of mutual information
I(xi, T ), is obtained from the equation [40]:

I(xi, T ) =
1

N

∑
n

[
log2(p(xi(n), xi(n+ T )))

− log2(p(xi(n)))− log2(p(xi(n+ T )))
]
, (3)
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where p(xi(n)) is the marginal probability distribu-
tion function of the analysed series, T is time delay,
p(xi(n), xi(n + T )) is the joint probability distribution
function, N � number of samples in a time series.
According to that method, as the value of time delay

τ the lowest T value in Eq. (3) should be assumed, for
which the function of mutual information has the local
minimum.
The method of delays is the most popular, but not the

only one, used for reconstruction of phase space. The
most commonly known methods are: factor analysis [41],
singular spectrum approach (SSA) [42] and the Pakard
et al. method of derivatives [43].

4. Quantitative analysis of the phase trajectory

This section of the paper describes the potential use
of phase trajectories, for damage detection of structural
components, the attractor of which is a static equilibrium
point of the component being diagnosed (static de�ection
of the component). In other words, it is the trajectory of
the mechanical system of �reaching� the equilibrium state
(point) after change of the initial conditions or after its
impulse excitation.
To move to the quantitative analysis of the phase tra-

jectory, repeatability of initial conditions and pulse ex-
citation should be ensured during vibration analysis. In
case of numerical calculations, this is done by assuming
zero initial conditions and exciting vibrations with an im-
pulse of �nite (but not zero) duration. In experiments,
the excitation was done with a steel ball falling freely. In
each case, the same initial height of the ball was assured
and bouncing was eliminated.
The e�ectiveness of the proposed method was, at �rst,

tested on a simple model with two dofs, as shown in
Fig. 1. The damage was modelled by simultaneous, per-
centage variation of spring coe�cient k2 (decreasing) and
damping coe�cient c2 (increasing). For such a model, se-
lection of damage indices was proposed.

Fig. 1. System with two degrees of freedom.

Figure 2 shows an example of phase trajectories de-
termined numerically for the damaged (continuous line)
and undamaged (dashed line) system.
In Fig. 2, the initial and �nal parts of vibration were

omitted, otherwise such samples would make the �gure
illegible.

Fig. 2. Phase trajectory variation due to damage.

The author proposes to carry out quantitative analysis
of the trajectory using two damage indices. The �rst one,
refers to the distance between a point on a trajectory and
the point which is the attractor of the trajectory. That is
why the location of each point on the trajectory should
be described by polar coordinates (r, ϕ).
Figure 3 shows fragments of an example of r(t) vector

for an undamaged (continuous line) and damaged com-
ponent (dashed line).

Fig. 3. Distance between the point on phase trajectory
and the attractor.

As the damage index a sum of relative di�erences of r
vectors is proposed. Such damage index DIr is de�ned
by the formula:

DIr =
1

N

∑
n

rd(n)− rh(n)

rh(n)
, (4)

where rd � vector of distance between points on tra-
jectory and the attractor, determined for the damaged
element, rh � vector of a healthy (or reference) element,
N � number of samples.
The other proposed damage index refers to the

Poincaré map. The Poincaré map is a tool invented
by Henri Poincaré, used for analysing phase portraits
of complex systems. It is constructed by a stroboscopic
�viewing� of a phase trajectory in constant intervals. In
other words, the Poincaré map is composed of a series of
�snapshots� of the movement in the phase space, taken
in regular intervals.
Figure 4 shows an example of phase trajectory and its

relevant Poincaré map.
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Fig. 4. Trajectory and its Poincaré map.

Fig. 5. Poincaré maps for the system shown in Fig. 1
with various extent of damage.

If the snapshots are taken in intervals corresponding
to the period of the �rst natural frequency (as shown
in Fig. 4), then such Poincaré map makes (after attenua-
tion of transient processes related to higher frequencies) a
straight line � points on the map aimed at the attractor.
If the same intervals are used for creating Poincaré map
for the trajectory of a system of other mass and sti�ness
parameters (e.g. damaged component), such map will no
longer form a straight line.
Such �curvature� of the map is due to the fact that,

as result of damage, the period of the natural vibration
of the system changes, therefore the snapshots are not
taken with the angle increment of a polar coordinate ϕ
equal to 2π.
Figure 5 shows example of the Poincaré maps changes

for the system shown in Fig. 1, as function of the damage
severity.

Fig. 6. Changes of the proposed damage indices as
function of damage severity (a) DIr and (b) DIϕ.

The proposed damage index involves the sum of rela-
tive di�erences of angle vectors ϕ of the Poincaré map.
Such DIϕ index is de�ned by:

DIϕ =
1

N2

∑
n

ϕd(n)− ϕh(n)

ϕh(n)
, (5)

where ϕd � vector of polar coordinates of the Poincaré
map determined for a damaged element, ϕh � vector
for a healthy (or reference) component, N2 � number of
samples on the Poincaré map.
Figure 6 shows the two proposed damage indices as

a damage function for the two dofs system (shown in
Fig. 1).
After testing the e�ectiveness of the proposed method

on a simple model with two degrees of freedom, its e�ec-
tiveness was checked on a numerical model of a cantilever
beam with a crack.

5. Analysing trajectory of a cracked beam

� simulation tests

The phase trajectory was determined by simulation of
an impulse response of the beam with crack of di�erent
depth a showed schematically in Fig. 7.

Fig. 7. Analysed beam with crack.

The beam was modelled by using one-dimensional
�nite elements, together with a special element with
crack [32, 45, 46]. Using a one-dimensional FEM model
involves determining the sti�ness, mass and damping
matrices of the analysed component and using them
for motion equations integrated with �nite di�erence
method [47].

Fig. 8. Damage indices based on phase trajectory
(a) DIr and (b) DIϕ.

Figure 8 shows both proposed damage indices as the
function of relative crack depth.
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6. Analysing trajectory of a cracked plate

� experimental tests

Figure 9 shows the tested aluminium plate. For diag-
nostic tests 6 plates of various crack length were prepared
d = 0, 20, 40, 60, 80, 100 mm. Cracks of the plate across
the material were made with laser (gap width 0.4 mm).

Fig. 9. Tested plate with the crack.

Phase trajectory was determined by measuring accel-
eration in function of vibration velocity (testing stand is
shown in Fig. 10).

Fig. 10. Test stand.

Figure 11 shows both proposed damage indices as the
function of crack length d.

Fig. 11. Damage indices based on phase trajectory
(a) DIr and (b) DIϕ.

7. Conclusions

With the diagnostic method based on analysing the
phase trajectory, the damage can be detected quickly and
e�ectively.
Analysis of the damage indices as the function of dam-

age severity shown in Figs. 8 and 11 demonstrated high
sensitivity (possible detection of damage in early stage)

of the proposed diagnostic method. Early detection of
damage in structural component allows to: optimise re-
pair activities (as to the scope and necessity), avoid loss
related to forced downtime, reduction of the cost of un-
desired storage of spare parts and cost incurred through
unexpected breakdowns.
High sensitivity in function of damage, involves also

considerable variations of the damage index value, which
allows the detection and analysis of the damage progres-
sion. In other words, by comparing the current trajectory
with that of the previous diagnostic test, it is possible to
establish if the nature of crack is either propagating or
stationary. Only the propagating crack can cause failure
of the diagnosed element.
The method does not �lter non-linear e�ects and varia-

tions of the frequency structure in the diagnostic signals,
related to the progress of damage, which can be consid-
ered as its special advantage.
Practical application of the phase trajectory based

methods appear a very useful tool for identifying the pro-
cess of damage initiation and propagation. It can serve
as major indicator of damage and is easily adaptable in
practical applications.
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