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Uncertainty assessment in modelling of acoustic phenomena with uncertain parameters using interval
arithmetic on the example of the reverberation time estimation, are presented in the paper. The application of
the classical interval analysis formalism as well as its expansions are shown. Statistical methods of estimation of
the reverberation time are based on parameters, which are related, among others, to the geometry of the analysed
room, characteristics of sound absorption, and interior transmission. Values of these parameters are usually
di�cult to determine, which has a signi�cant in�uence on the modelling result. The interval analysis allows
to determine the variability interval of the parameter being estimated. The authors determined the in�uence
of the input parameters uncertainty on the estimated reverberation time, calculated according to the Sabine,
Eyring�Norris and Millington�Sette formulae. The uncertainty analysis was performed for the literature data,
related to the reverberation time calculations of the room of a certi�ed acoustics.
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1. Introduction

The reverberation time is one of the main parameters
in the estimation of acoustic properties of rooms. This
parameter, at the designing stage, is determined on the
grounds of statistical models. Since the modelling result
is strictly dependent on input parameters, their inaccu-
racy in�uences the results. Inaccuracy of room cubature
measurements, approximate values of absorption coe�-
cients of heterogeneous surfaces, as well as not precise
assessments of the sound absorption coe�cient in air �
to mention only the most important examples of such
inaccuracies.
In order to estimate the in�uence of the listed inac-

curacies on the modelling result the uncertainty analysis
was performed. The formalism of the interval arithmetic
and its expansions were used. Such approach to the un-
certainty estimation of acoustic parameters was discussed
in the previous papers of the authors [1].

2. Formalism of the interval arithmetic

and its expansions

The arithmetic based on interval operations started in
the 50-ties, however only in the 60-ties it was named the
interval arithmetic (Moore [2, 3]). Its primary applica-
tion was in controlling the error rounding in numerical
calculations. The advantage of such arithmetic is the
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uncertainty control at each calculation stage. Such ap-
proach can lead to overestimation of the results since
the classical interval arithmetic does not take into ac-
count correlations between sets of errors. Due to this
fact, several expansions of this arithmetic and of interval
reductive methods were developed. One of such expan-
sions is the reductive interval arithmetic [4], discussed in
Sect. 2.2. The method of the precise determination of the
resulting interval, in a form of the determination of indi-
vidual disturbances in�uence on the analysis result, was
also developed. This expansion is discussed in Sect. 2.3.

2.1. Classical interval arithmetic

In the classical interval arithmetic, proposed by Moore,
intervals are represented as limited sets of real numbers

x = [x, x̄] = {x ∈ R : x ≤ x ≤ x̄}, (1)

where x is the interval lower limit � in�mum, while x̄
is the upper limit � supremum, while x is an arbitrary
real number belonging to the interval. Interval numbers
are written in bold.
The basic arithmetic operations are de�ned on the in-

terval set:

x♢y = {z = x♢y : x ∈ x, y ∈ y}, (2)

where ♢ is one of the operators: addition, subtraction,
multiplication and division. These operators, apart from
division, are de�ned for arbitrary sets. For division it
should be assumed that: 0 /∈ y.
Additions and subtraction of intervals is realised by

operations on the end points, according to (3) and (4):

(A-152)
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x+ y = [x+ y, x̄+ ȳ], (3)

x− y = [x− ȳ, x̄− y]. (4)

The interval being the multiplication result is deter-
mined on the basis of the smallest and largest product of
two end points of the interval x, y

x ·y =
[
min(xy, xȳ, x̄y, x̄ȳ), max(xy, xȳ, x̄y, x̄ȳ)

]
. (5)

The division operation is determined by means of re-
ciprocal

x

y
= x

1

y
, (6)

while the interval reciprocal is presented by the for-
mula (7):

1

y
=

[
1

ȳ
,
1

y

]
; when y > 0 or ȳ < 0. (7)

2.2. Reductive interval arithmetic

One of the expansions of the Moore's classical interval
arithmetic is the reductive interval arithmetic, proposed
by Jakubiec [4]. The interval x = [x, x̄] � in the re-
ductive interval arithmetic � is written by means of the
interval median mid(x) and radius rad(x):

x̆ = mid(x) =
x+ x̄

2
, (8)

rad(x) =
|x̄− x|

2
. (9)

Relations in between intervals are the same in the clas-
sical and reductive interval arithmetic. However, the
crucial advantage of the reductive arithmetic is an in-
troduction of the coherence coe�cient, which describes
properties and correlation between intervals and in e�ect
reduces the interval width.

The interval � in a sense of the interval arithmetic �
can be treated as a sum of two independent components:
centre x̆ and unbiased interval ±rad(x):

x = [x, x̄] = [x̆− rad(x), x̆+ rad(x)]

= x̆± rad(x) = x̆+ [−rad(x), rad(x)]. (10)

Due to such approach operations on intervals can be
done separately for these two components. Operations
on the interval centres, which are real numbers, are per-
formed according to rules obligatory for these numbers,
whereas operations on unbiased intervals are performed
by means of the reductive interval arithmetic. For each
pair of intervals � in the reductive interval arithmetic �
the number called the coherence coe�cient is determined

rij ∈ R, −1 < rij < 1. (11)

This coe�cient describes properties of individual un-
certainty intervals and dependences in between the given
pair of intervals.

Mathematical operations for the reductive arithmetic
are described as follows:

y = x1 + x2 = y̆ + [−rad(y),+rad(y)], (12)

where

y̆ = mid(y) = x̆1 + x̆2, (13)

rad(y) =

√
rad2(x1)+ rad2(x2)+ 2rad(x1)rad(x2)r12.

(14)

For the coe�cient of coherence equal to 1 the same
dependences as for the Moore's classical arithmetic are
obtained, however when this coe�cient is di�erent, the
interval width decreases.

2.3. Perturbation interval arithmetic

Subsequent expansion of the classical interval arith-
metic was done by Skrzypczyk. This method was cre-
ated from combining two algebraic systems, Moore's
interval numbers [2, 3] and perturbation numbers of
Skrzypczyk [5].
By using dependence (12) the interval number can be

written in a form

x = [x̆− rad(x), x̆+ rad(x)]. (15)

It is assumed in the perturbation arithmetic that the
interval radius is the perturbation number

rad(x) = ε1δx1 + ε2δx2 + . . .+ εnδxn,

δx1, δx2 . . . δxn ≥ 0. (16)

By de�ning n independent perturbation intervals εi =
[−εi, εi], i = 1, 2, 3 . . . n it is possible to write the pertur-
bation interval number as

x = x̆+ ε1δx1 + ε2δx2 + . . .+ εnδxn. (17)

Algebraic operations in the perturbation interval arith-
metic are realised as follows:

x+ y = x̆+ y̆ + ε1(δx1 + δy1) + ε2(δx2 + δy2)

+ . . .+ εn(δxn + δyn), (18)

x− y = x̆− y̆ + ε1(δx1 + δy2) + ε2(δx1 + δy2)

+ . . .+ εn(δxn + δyn), (19)

x · y = x̆y̆ + ε1(x̆δy1 + y̆δx1) + ε2(x̆δy2 + y̆δx2)

+ . . .+ εn(x̆δyn + y̆δxn), (20)

1/x = 1/x̆− ε1(δx1/x̆
2)− ε2(δx2/x̆

2)− εn(δxn/x̆
2).

(21)

Successive components at εi in the perturbation in-
terval arithmetic represent disturbances originating from
various sources. Applying this expansion of the inter-
val arithmetic to uncertainty estimation, it is possible
to determine not only the variability range but also the
in�uence of individual error sources on the �nal result.

3. Interval arithmetic formalism in the

uncertainty determination in modelling

Applying the computation formalism of the interval
arithmetic the uncertainty analysis of the reverberation
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sound modelling � by statistical methods, according to
formulae of: Sabine, Eyring�Norris and Millington�Sette
� was performed. A signi�cant role in the modelling pro-
cess plays the coe�cient of sound absorption α, which the
most often is experimentally determined and since then
biased with uncertainty. This uncertainty can have a
signi�cant in�uence on the modelling result, similarly as
errors related to the room cubature measurements V , S
and the coe�cient of absorption by air m.

On the basis of measurements carried out in the Lviv
State University Assembly Hall by the authors of pa-
per [6], the reverberation time was determined from the
Sabine 's equation with expansion containing absorption
by air

TSab =
0.16V

4mV + SαSab
, (22)

αSab =
1

S

n∑
i=1

αiSi, S =
n∑

i=1

Si, (23)

where V � room volume [m3], S � total surface of the
room [m2], m � coe�cient of absorption by air [Np/m],
αSab � average sound absorption coe�cient.

The following data were used in calculations: V =
3400 m3, m = 2.7 × 10−3 Np/m. The sound absorp-
tion coe�cients for individual surfaces αi and coordinates
of points determining surfaces Si are taken from the re-
sults of the measurements carried out by the authors of
work [6].

Uncertainties of the model input parameters
V, S, m, αi were determined in a form of their
variability intervals. Using the formalism of the Moore's
classical interval arithmetic [2, 3] intervals of the re-
verberation time variability TSab were determined in
dependence of uncertainty of input parameters expressed
in percentages (Fig. 1). The analysis of the uncertainty
of modelling when other statistical methods were applied
was also performed. The results are presented in Fig. 1.

Fig. 1. Reverberation time estimated by various sta-
tistical methods for the frequency of 125 Hz and the
parameters uncertainty from 0% to 5%.

Then the uncertainty of the reverberation time estima-
tion by the Sabine 's method was assessed (with taking
into account the air absorption) using the perturbation

interval arithmetic. The in�uence of αSab and m param-
eters on the modelling result was investigated. The ob-
tained analysis results were compared with the ones ob-
tained by means of the classical interval analysis (Fig. 2).

Fig. 2. Reverberation time estimated by various sta-
tistical methods for the frequency 125 Hz and the αSab

and m parameters uncertainty from 0% to 5%.

As can be seen in the above �gure the perturbation
interval arithmetic provides the same results as the clas-
sical one, however, its advantage is the possibility of esti-
mation of the in�uence of individual perturbations (dis-
turbances) variability on the uncertainty of the result.
Applying the properties of the perturbation arithmetic,
specifying αSab and m as perturbation interval numbers,
the Sabine 's formula can be written as follows:

T̆Sab =
0.16V

4m̆V + SᾰSab
, (24)

TSab,i = −0.16V (4V δmi + Sδαi)

(4V m̆+ SᾰSab)2
, (25)

where T̆Sab is the interval centre, it means the formula
without disturbances, while TSab,i is the i-th interval per-
turbation of the reverberation time. Each successive per-
turbation can be the result of disturbances of input pa-
rameters originating from other error sources.

Fig. 3. Reverberation time determined by various sta-
tistical methods for the frequency 125 Hz, with the un-
certainty of αSab and m parameters from 0% to 5%.

The successive experiment constituted the application
of the reductive interval arithmetic for the uncertainty
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estimation. The analysis of the in�uence of the parame-
ters αSab and m uncertainty, at the given coherence co-
e�cient, on the uncertainty of the modelling result, was
performed. For the coherence coe�cient r = 1 the esti-
mation results are the same as the results of the classical
interval arithmetic. However, after taking into account
the distribution of αSab and m parameter (at the coher-
ence coe�cient r = 0.334) the interval of the reverber-
ation time uncertainty decreased, which indicates more
precise error representation (Fig. 3).
Determination of properties of error sources as well as

their mutual relations enables more precise uncertainty
analysis. However, it is not always possible to determine
the correlation between input parameters.

4. Conclusions

Analyses performed by various interval methods indi-
cated signi�cant in�uence parameters of the reverbera-
tion time models on the estimated result. Application of
interval arithmetic expansions enables the more precise
determination of the modelling uncertainty � reductive
interval arithmetic, as well as the estimation in�uence
of individual disturbances � perturbation interval arith-
metic. Disturbances can simultaneously in�uence several

parameters, which can indicate the correlation in between
them. Thus, both arithmetic expansions seem to be a
good tool for the estimation of the acoustic parameters
uncertainty, including the reverberation time.
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