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This paper is concerned with mathematical aspects of modelling vibration of a plate with piezoelectric
actuators. Particularly, a thin Kirchho��Love plate with arbitrary shaped actuators (e.g. triangles, parallelograms,
discs) is considered. The moments that act upon a structure and are induced by piezoelectric actuators, are
described by the generalized tensor product of a distribution and distribution-valued function. Finally, the
formula for the solution of the Cauchy problem in the class of absolutely continuous tempered distribution-valued
functions is derived.
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1. Introduction

Noise and vibration are persistent problems in many
industrial applications. It occurs that the usage of pas-
sive methods to give the solution is inadequate in numer-
ous cases. The possibility of active noise and vibration
control has been explored for over 50 years [1]. The ad-
vantage of using di�erent shaped, distributed actuators
for active control has been demonstrated by a number
of researchers e.g. [2�4]. Originated by Sobolev [5] and
Schwartz [6] theory of distributions is modern mathe-
matical tool. Its origins reach back to physical problems
where to describe some phenomena by the notion of func-
tion was inadequate. It also appeared that extension of
the notion of the solution of a di�erential equation was
convenient (distributional solution, weak solution). In
particular, in acoustics the Dirac distributions appear in
the wave equation in the case of quasi-point sources or
moving sources. Also in active noise and vibration con-
trol distributions turn out to be powerful tool.
In this paper a thin Kirchho��Love plate with piezo-

electric actuator is considered. The actuator consists of
two identical piezoceramic elements adhered symmetri-
cally to each side of the plate. The actuator is activated
by applying a voltage of opposite signs to the opposing
piezoelectric patches. The activated piezoelectric actua-
tor will induce internal moments across the piezoelectric.
It has been demonstrated that a shape and the location
of actuator in�uence its ability to excite certain modes.
In the case of rectangular actuators which are bonded so
that their edges are parallel to the edges of a rectangu-
lar plate, the external loads can be described by a tensor
product of some distributions [1]. However, in the case of
di�erently shaped actuators (e.g. triangles in [4]) the de�-
nition of the tensor product must be extended to the case
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of a product of a distribution and a distribution-valued
function.

2. Notations

Let D(Rn) be the space of test functions that con-
sists of all smooth functions with compact supports, and
D′(Rn) be the space of distribution, that is the space of
all linear, continuous functionals on D(Rn). The simplest
example of a distribution is so-called regular distribution
de�ned for any locally summable function χ : Rn → R
by the formula

[χ](φ) =

∫
Rn

χ(x)φ(x)dx (1)

for φ ∈ D(Rn) [7].

It may be worth reminding the reader that if α =
(α1, . . . , αn) ∈ Nn is a multi-index then Dα denotes the
di�erential operator of order |α| = α1 + . . .+ αn,

Dα =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

, (2)

and for any distribution T ∈ D′(Rn) derivative DαT is a
distribution de�ned by the formula

DαT (φ) = (−1)|α|T (Dαφ) (3)

for φ ∈ D(Rn). In particular,

d

dx
[Ha](φ) = −[Ha](φ

′)

= −
∫ +∞

a

φ′(x)dx = φ(a) = δa(φ) (4)

for φ ∈ D(R), where Ha is a Heaviside step function,
Ha(x) = 1 for x ≥ a and Ha(x) = 0 for x < a,
and δa is the Dirac distribution and for any φ ∈ D(R),
δa(φ) = φ(a). Thus
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d

dx
[Ha] = δa. (5)

Recall that for any distribution T ∈ D′(Rn) and ψ ∈
C∞(Rn) the product ψT ∈ D′(Rn) and is de�ned by

(ψT )(φ) = T (φψ) (6)

for φ ∈ D(Rn), while the tensor product of distributions
T, S ∈ D′(R) is a distribution S ⊗ T ∈ D′(R2) de�ned as

(S ⊗ T )(φ) = S(x 7→ T (φ(x, ·))) (7)

for φ ∈ D(R2). In the above the distribution S ∈ D′(R)
is assumed to operate on test functions of variable x,
while T ∈ D′(R) is a distribution on test functions of
variable y. It is well known that for any φ ∈ D(R2)
the mappings R ∋ y 7→ φ(x, y) ∈ R for �xed x, and
R ∋ x 7→ T (φ(x, ·)) ∈ R are test functions of variables y
and x, respectively. It is also known that the following
formulae for derivatives are true [7]:

∂k

∂xk
(S ⊗ T ) =

dk

dxk
S ⊗ T,

∂k

∂yk
(S ⊗ T ) = S ⊗ dk

dyk
T. (8)

As usual let S(Rn) denote the space of rapidly decreas-
ing functions, i.e.

S(Rn) =
{
φ ∈ C∞(Rn,C) :P ·Dαφ is bounded

∀α ∈ Nn ∀P ∈ P(Rn)
}
, (9)

where P(Rn) denotes the set of all polynomials Rn → R.
Of course S(Rn) is a Fréchet space, and D(Rn) ⊂ S(Rn).
Recall that a distribution T ∈ D′(Rn) is tempered when
it is continuous in topology of S(Rn). This is equivalent
to the fact that there is the unique extension T̄ of T to
S(Rn) [4]. It is customary to identify T with its exten-
sion T̄ . The space of tempered distribution is denoted by
D′

temp(Rn). Finally, the Fourier transform of tempered

distribution T ∈ D′
temp(Rn), denoted by F(T ) or T̂ , is

de�ned by

T̂ (φ) = T̄ (φ̂) (10)

for φ ∈ S(Rn), where φ̂(ξ) = (2π)−
n
2

∫
Rn e− iξ·yφ(y)dy.

For tensor product of T, S ∈ D′
temp(R) one obtains

F(S ⊗ T ) = Ŝ ⊗ T̂ . (11)

It is known that the Fourier transform is invertible in the
space of tempered distributions, and

F−1 = F3. (12)

3. The vibration model

Let us consider the equation of motion

D∆2w + µ
∂2

∂t2
w = f, (13)

where w, a function of time variable t and spatial vari-
ables (x, y), is a transverse displacement, and ∆ is the

Laplacian. Moreover f , a function of (t, x, y), is the ex-
ternal excitation, µ = ρh0, ρ is the material density, and
h0 is the plate thickness, D = Eh30/12(1−ν2) is the �ex-
ural rigidity of the plate, ν and E are the Poisson ratio
and Young's modulus, respectively. Additionally, con-
sider a triangle-shaped piezoelectric actuator adhered to
the plate. The actuator consists of two identical triangle-
-shaped piezoelectric elements of thickness h, bonded
symmetrically on two opposite surfaces of the plate as
shown in Fig. 1.

Fig. 1. Plate with triangular actuator.

The two elements are excited by opposite voltages and
the actuator generates distributed reaction moments in
the plate. It is assumed that the reaction moments mx

and my are equal and homogeneous over the actuator
area. Let fpe, a function of (t, x, y), be an additional
external force caused by activating the piezoelectric ele-
ment. It was demonstrated in [1, 4] that

fpe =
∂2mx

∂x2
+
∂2my

∂y2
(14)

and

mx = my = m = C0ϵpeχ, (15)

where C0 denotes the piezoelectric strain�plate moment
coupling term, ϵpe = (d31V )/h is the magnitude of the
induced strain, d31 piezoelectric-strain constant, V is the
applied voltage, and χ is a characteristic function de-
�ned on the area Γ , on which the piezoelectric actuator
is bonded,

χ(x, y) =

{
1 if (x, y) ∈ Γ ,

0 if (x, y) /∈ Γ ,
(16)

while Γ = {(x, y) : x1 ≤ x ≤ x2, a1x+b1 ≤ y ≤ a2x+b2}.
Of course the function χ is not di�erentiable (even not

continuous) however the derivatives of m can be under-
stood in the sense of the theory of distributions. Namely,
a locally summable function χ : R2 → R de�nes regular
distribution by the formula

[χ](φ) =

∫
Γ

φ(x, y)dxdy (17)

for φ ∈ D(R2). It is also convenient to treat the dis-
tribution [χ] as a tensor product of distributions, [1, 4],
one that operates on test functions of variable x, and the
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second one which is a distribution on test functions of
variable y. This treatment is appropriate for the case of
rectangular actuator which is bonded so that its edges
are parallel to the plate edges, though with more com-
plicated shapes of actuators one should be more careful.
In particular for triangular actuator the distribution [χ]
cannot be treated as a tensor product of distributions
since fi(x) = aix + bi is a function of x and [Hfi ] is no
longer a distribution but a distribution-valued function,
R ∋ x 7→ [Hfi(x)] ∈ D′(R). A simple example showing
that even when a distribution S operates on test func-
tions of variable x and T (x) ∈ D′(R) is a distribution
that operates on test functions of variable y, the ten-
sor product is not a distribution, can be constructed.
Namely, let T be a regular distribution generated by lo-
cally summable function

u(x, y) =

{
1 if 0 ≤ x ≤ 1, y ∈ R,
0 otherwise.

(18)

Then for any �xed x, T (x) = [u(x, ·)] is a distribution
that operates on test functions of variable y. But for a
test function φ ∈ D(R2) such that suppφ ⊂ [0, 1]× [0, 1],
φ = 1 on suppφ there is

T (x)φ(x, ·) = [u(x, ·)]φ(x, ·) =
∫
R
u(x, y)φ(x, y)dy

=

{ ∫
R φ(x, y)dy for x ∈ [0, 1],

0 for x /∈ [0, 1],
(19)

Thus

T (x)φ(x, ·) =

{
1 for x ∈ [0, 1],

0 for x /∈ [0, 1].
(20)

But the function R ∋ x 7→ T (x)φ(x, ·) is even not contin-
uous, so it is not a test function. Consequently, there is
no sense in putting S(x 7→ T (φ(x, ·))) for S ∈ D′(R).
For this reason one needs to use the generalized ten-

sor product. This notion is also called the parame-
ter product [8]. Let a distribution-valued function T :
R ∋ x 7→ T (x) ∈ D′(R) be of class C∞ i.e. a func-
tion R ∋ x 7→ T (x)φ ∈ R is a smooth function for all
φ ∈ D(R). With this assumption one can verify that the
map R ∋ x 7→ T (x)φ(x, ·) ∈ R is a test function for any
φ ∈ D(R2). Thus it is meaningful to de�ne the gener-
alized tensor product of S ∈ D′(R) and T , S ⊗ T as a
distribution belonging to D′(R2) as follows:

(S ⊗ T )(φ) = S(x 7→ T (φ(x, ·))) (21)

for any φ ∈ D(R2). The following formulae for deriva-
tives of S ⊗ T are also true

dk

dxk
(S ⊗ T ) =

k∑
i=0

(
k

i

)
di

dxi
S ⊗ T (k−i)(·), (22)

dk

dyk
(S ⊗ T ) = S ⊗ dk

dyk
(T (·)) (23)

for any k ∈ N, where the symbols ∂k/∂xk, di/dxi,
∂k/∂yk, dk/dyk denote derivatives of distributions in ac-

cordance with (3), while T (j) means the j-th derivative
of the map T , i.e.

T (j)(x)(φ) =
dj

dxj
(T (x)φ) (24)

for any φ ∈ D(R).
Therefore, the internal moments across the triangular

piezoelectric can be expressed as the generalized tensor
product

mx = my = C0ϵpe
(
[Hx1 −Hx2 ]⊗

[
Hf1(·) −Hf2(·)

])
.

(25)
Since for any x ∈ R and φ ∈ D(R):[

Hfi(x)

]
φ =

∫ ∞

fi(x)

φ(y)dy, i = 1, 2, (26)

the derivative of the map R ∋ x 7→ [Hfi(x)] ∈ D′(R) can
be easily found as[

Hfi(·)
]′
(x) = −f ′i(x)δfi(x) = −aiδfi(x),

i = 1, 2 (27)
and[

Hfi(·)
]′′
(x) = −f ′′i (x)δfi(x) + (f ′i(x))

2δ′fi(x)

= a2i δ
′
fi(x)

, i = 1, 2. (28)

Thus from (25), (22) one obtains

∂2m

∂x2
= C0ϵpe

(
[Hx1 −Hx2 ]⊗

(
a21δ

′
f1(·) − a22δ

′
f2(·)

)
+2(δx1 − δx2)⊗

(
a2δf2(·) − a1δf1(·)

)
+
(
δ′x1

− δ′x2

)
⊗
[
Hf1(·) −Hf2(·)

])
. (29)

Similarly, in accordance with (25), (23)

∂2m

∂y2
= C0ϵpe

(
[Hx1 −Hx2 ]⊗

(
δ′f1(·) − δ′f2(·)

))
. (30)

Consequently,

fpe(t) = C0ϵpe

((
δ′x1

− δ′x2

)
⊗
[
Hf1(·) −Hf2(·)

]
+2(δx1 − δx2)⊗

(
a2δf2(·) − a1δf1(·)

)
+ [Hx1 −Hx2 ]⊗

(
(a21 + 1)δ′f1(·) − (a22 + 1)δ′f2(·)

))
.

(31)

Finally, the equation of motion for a plate with triangular
piezoelectric actuator is obtained as

D∆2w(t) + µ
d2

dt2
w(t) = f(t) + fpe(t) (32)

with fpe given by (31).
It should be noted that unknown function w is now

treated as an evolution in time of a two-dimensional dis-
tribution, w : [0,+∞) ∋ t 7→ w(t) ∈ D′(R2). Conse-
quently, the second derivative with the respect to t is now
understood as a derivative of a function of one variable
t [9]. Similarly f, fpe : [0,+∞) → D′(R2) are functions
of t.
Observe that this method can be useful for actuators
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Fig. 2. Plate with parallelogram-shaped actuator.

Fig. 3. Plate with disc-shaped actuator.

of more complicated shape. For example consider par-
allelogram and disc-shaped actuators as shown in Fig. 2
and Fig. 3. In both cases the reaction moments can be
presented as

mx = my = m = C0ϵpeχ, (33)

where χ is a characteristic function of Γ , and

Γ = {(x, y) : x1 ≤ x ≤ x2, ax+ b1 ≤ y ≤ ax+ b2}
(34)

(a = tanα) for parallelogram-shaped actuator, and

Γ =
{
(x, y) : x1 = x0 − r ≤ x ≤ x0 + r = x2,

y0 −
√
r2 − (x− x0)2 ≤ y ≤ y0 +

√
r2 − (x− x0)2

}
(35)

for disc-shaped actuator. Consequently

mx = my = C0ϵpe
(
[Hx1 −Hx2 ]⊗

[
Hf1(·) −Hf2(·)

])
,

(36)

where fi(x) = ax + bi (i = 1, 2) in the case of
parallelogram-shaped actuator, and f1,2(x) = y0 ∓√
r2 − (x− x0)2 in the case of disc-shaped actuator.

Hence in accordance with (22, 23) one obtains

fpe(t) = C0ϵpe

(
(δ′x1

− δ′x2
)⊗

[
Hf1(·) −Hf2(·)

]
+2a(δx1 − δx2)⊗ (δf2(·) − δf1(·))

+ (a2 + 1)[Hx1 −Hx2 ]⊗ (δ′f1(·) − δ′f2(·))
)

(37)

for parallelogram-shaped actuator. Similarly the formula
for the force caused by disc-shaped actuator is derived.

Namely[
Hfi(·)

]′
(x) = ∓ x− x0√

r2 − (x− x0)2
δfi(x),

i = 1, 2 (38)

and[
Hf1,2(·)

]′′
(x) =

1

r2 − (x− x0)2

×

(
∓ r2√

r2 − (x− x0)2
δf1,2(x) + (x− x0)

2δ′f1,2(x)

)
.

(39)
Finally

fpe(t) = C0ϵpe

((
δ′x1

− δ′x2

)
⊗
[
Hf1(·) −Hf2(·)

]
− 2(δx1 − δx2)⊗

x− x0√
r2 − (x− x0)2

(
δf2(·) + δf1(·)

)
−[Hx1 −Hx2 ]⊗

r2

[r2 − (x− x0)2]
3
2

(
δf2(·) + δf1(·)

)
+ [Hx1 −Hx2 ]⊗

r2

[r2 − (x− x0)2]
3
2

×
(
δ′f1(·) − δ′f2(·)

))
. (40)

It may be worth to note that the presented method
is also applicable to the case of a system of piezoelec-
tric actuators. In this case the additional term fpe on
the right-hand side of (32) can be represented as a sum
fpe =

∑
i f

i
pe, where f

i
pe is the force caused by the i-th

piezoactuator.
The solution of Eq. (32) with appropriate boundary

conditions can be found using �nite element method
(FEM). At the same time an analytical formula for the
solution is possible to gain. Section 4 is devoted to a
method of getting this formula. The assumption of the
application of the method is that the right-hand side
of (32) is a tempered distribution.

4. The analytical solution to vibration problem

An analytical solution to the Cauchy problem related
to Eq. (32) can be obtained with the use of the Fourier
transformation. The assumption of the application of
the method is that the right-hand side of (32) is a tem-
pered distribution. Assume that S ∈ D′

temp(R) and
a distribution-valued function T : R ∋ x 7→ T (x) ∈
D′

temp(R) is of class C∞. If additionally the map T is
polynomially bounded together with all its derivatives,
i.e. the function R ∋ x 7→ T (x)φ is polynomially bounded
together with all its derivatives for all φ ∈ S(R), it can
be proved that the generalized tensor product S ⊗ T is a
tempered distribution, and

(S ⊗ T )φ = S(x 7→ T (x)φ(x, ·)) (41)

for any φ ∈ S(R2). In the case of fpe given by (31) it is
easy to observe that for any φ ∈ S(R) the functions
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x 7→
[
Hfi(x)

]
φ =

∫ +∞

fi(x)

φ(y)dy, (42)

x 7→ δfi(x)φ = φ(fi(x)), (43)

x 7→ δ′fi(x)φ = − d

dx
φ(fi(x)) (44)

are polynomially bounded together with all its deriva-
tives, and so

x 7→
[
Hfi(x)

]
φ(x, ·) =

∫ +∞

fi(x)

φ(y)dy, (45)

x 7→ δfi(x)φ(x, ·) = φ(x, fi(x)), (46)

x 7→ δ′fi(x)φ(x, ·) = − ∂

∂x
φ(x, fi(x)), (47)

are rapidly decreasing for any φ ∈ S(R2). Since distri-
butions δxi , δ

′
xi
, [Hxi ] are tempered, generalized tensor

products

[Hxi ]⊗ δ′f(xi)
, δxi ⊗ δf(xi), δ′xi

⊗
[
Hfi(x)

]
(48)

are also tempered. Similarly, one can show that distri-
butions in (37) and (40) are tempered.

Now turn to the Cauchy problem associated to
Eq. (32),

D∆2w(t) + µ
d2

dt2
w(t) = f(t) + fpe(t) + fb(t),

w(0) = w0,

w′(0) = w1,
(49)

with given initial conditions: w0, w1 ∈ D′
temp(R2), and

locally summable external forces f, fpe : [0,+∞) →
D′

temp(R2). In the usual manner the boundaries condi-
tions can be also included in (49) in terms of additional
element fb : [0,+∞) → D′

temp(R2) on the right hand-

-side of the equation. Since fpe : [0,+∞) → D′
temp(R2)

has values in the space of tempered distributions, it is
meaningful to search a solution w in the class of abso-
lutely continuous functions, w : [0,+∞) → D′

temp(R2),
in the sense of [9].

Setting

u = (u1, u2) : t 7→ (w(t), w′(t)) ∈ D′
temp(R2) (50)

the problem (49) can be rewritten as a �rst order Cauchy
problem

µ
d

dt
u(t) =

∑
|α|≤4

AαD
αu(t) + F (t) for a.e. t ≥ 0

u(0) = u0
(51)

where Dα is the di�erential operator in the sense of (3)
of order |α| = α1 + α2, for multi-index α ∈ N2, F (t) =
(0, f(t)+ fpe(t)+ fb(t)), u0 = (w0, w1) ∈ D′

temp(R2), and

A(0,0) =

(
0 1

0 0

)
, A(4,0) = A(0,4) = −D

µ

(
0 0

0 1

)
(52)

A(2,2) = −2
D

µ

(
0 0

0 1

)
. (53)

Aα = 0 for any other multi-index |α| ≤ 4. The existence
and the uniqueness of a solution of (49) follows from the
theorem 46 [9]. Actually, the eigenvalues of the matrix∑

|α|≤4

(iξ)αAα =

(
0 1

0 0

)
− D

µ
|ξ|4
(

0 0

0 1

)
, (54)

where |ξ|2 = ξ21 + ξ2 are

− i

√
D

µ
|ξ|2, i

√
D

µ
|ξ|2, (55)

thus there is a unique solution of the problem (51) given
by the formula

u(t) = F−1
(
et

∑
|α|≤4( iξ)

αAα û0

)
+

∫ t

0

F−1
(
e(t−s)

∑
|α|≤4( iξ)

αAα F̂ (s)
)
ds, (56)

where F−1 is the inverse Fourier transform (12) of the
tempered distribution.
Finally, one obtains the formula for the solution of (49)

w(t) = F−1

(
cos

(√
D

µ
|ξ|2t

)
ŵ0

)

+F−1

 1√
D
µ |ξ|2

sin

(√
D

µ
|ξ|2t

)
ŵ1


+

∫ t

0

F−1

(
1√
D
µ |ξ|2

sin

(√
D

µ
|ξ|2(t− s)

)

×
[
f̂(s) + f̂pe(s) + f̂b(s)

])
ds. (57)

5. Conclusions

Some mathematical problems in modelling vibration
of a plate with piezoelectric actuators of arbitrary shape
were discussed. The internal moments across the actua-
tor were described in terms of generalized tensor product
of a distribution and a distribution-valued function. Fi-
nally the formula for the unique solution in the class of
absolutely continuous distribution-valued functions was
demonstrated. Presented method is also applicable to
the case of a system of piezoelectric actuators.
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