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This paper deals with simple supported beam�actuators�concentrated masses mechanical system; it appears
in active vibration reduction problem. To solve the problem with the Fourier method, the system is discretized
into uniform elements. In the paper the orthogonality condition of the modes of the discretized system is derived.
Furthermore, the solution of the forced vibration problem of the above system, appearing inherently in the active
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1. Introduction

The beam, actuators and (concentrated) masses can
consist of three mechanical systems as the research ob-
jects. First of them makes up beam�masses, the second:
beam�actuators and the last is a combination above men-
tioned ones, i.e. beam�actuators�masses (BAM).
The beam is a structural element carrying masses elas-

tically or sti�y attached to it; this is the natural task of
the beam. The concentrated masses are also used to the
modi�cation of the structure dynamics [1, 2]. The free
vibration of these systems are solved in many papers, but
only natural frequencies or/and modes have usually been
obtained by means of an exact analysis [2, 3], as well as
by employing some approximate methods [4, 5].
Second mechanical system, the beam�actuators, is of

practical interest in active vibration reduction [6�11]. Ac-
tuators are glued to the beam and they become part of it.
Both actuators and the glue (layers) are relatively light,
compared to the structure. However, to make the vibrat-
ing simulation more precise, the dynamic e�ects (mass
loading and sti�ness) of actuators and glue should be
considered. This problem is solved numerically: for ac-
tuators in [12, 13], for glue in [14, 15].
The BAM system appears in active beam vibration

reduction with masses. Adding actuators (and the glue
at the same time) is the technical necessity. As far as
masses are concerned, from practical point of view, the
beam is designed for loading with the masses.
Furthermore, from a scienti�c point of view, adding

them may be substantiated as follows. To clearly explain
the optimal distribution of the actuators on the beam in
active vibration reduction, the asymmetrical forms are
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needed. The asymmetrical e�ect may be achieved adding
to the beam concentrated masses. This problem is widely
explained in [16] and presented in [17].
Now the problem arises, how to describe the free and

forced vibrations of the above systems? It may be solved
as follows. The e�ects of attached masses are expressed
with the Dirac delta distribution, but dynamic e�ects of
bonded actuators and glue are expressed with the Heav-
iside one. So, the theory of distribution is used to for-
mulate this problem [18]. Next, the di�erential equation
of transverse vibrations of the BAM system with a local,
stroke change of sti�ness is derived.
Another attitude, admittedly applied to the uniform

beam, is presented in [19]. The uniform beam is dis-
cretized into elements. The boundary conditions of each
individual element are modeled by using translational
and rotational spring and concentrated mass. The study
in [19] is restricted to the natural frequencies and the
mode shapes of the beam. This paper is an extension of
the above reference. Here, the system BAM is not uni-
form, but it is discretized into uniform elements. The
division is not coincidental; it is imposed out of the
change of physical properties, i.e. properties of actua-
tors, glue and masses. To solve the free and forced vi-
brations problem of the BAM discretized system with
the Fourier method (separation of variables method, so-
lution by eigenfunction expansion), the eigenfrequencies
(natural frequencies), eigenfunctions (modes) and their
orthogonality condition are needed. The aim of the pa-
per is just to derive the orthogonality condition of the
modes.

2. Modal analysis formulation

Let be the simple supported beam as depicted in Fig. 1.
The particular form of the Bernoulli�Euler equation gov-

(A-126)



Modes Orthogonality of the Mechanical System . . . A-127

erning transverse modal vibration has a following stan-
dard form ([20] s. 172, [21]),

EJD4u+ ρSD2
tu = 0, (2.1)

where u = u(x, t) � beam de�ection at the point x and
the time t, D4(.) = ∂4(.)/∂x4, Dt(.) = ∂(.)/∂t, b � beam
width; hereafter the rest symbols are explained together.

Fig. 1. The geometry of the simple supported beam.

To solve Eq. (2.1) explicitly, four boundary conditions
at the ends of the beam are needed. For the simple sup-
ported beam both displacement and the bending moment
are equal to zero

u(0, t) = 0, D2u(0, t) = 0, (2.2)

u(ℓ, t) = 0, D2u(ℓ, t) = 0. (2.3)

Furthermore, one needs to know the initial conditions.
They represent the initial displacement and the speed of
the beam points

u(x, 0) = û(x), (2.4)

Dtu(x, 0) = v̂(x). (2.5)

Equations from (2.1) to (2.5) constitute the modal anal-
ysis formulation.

2.1. Beam with actuators

To solve the modal problem of the BAM system,
Eq. (2.1) must be rounded out. First of all, actuators
must be glued to the beam; they are arranged as de-
picted in Fig. 2. The location and length of separate ac-
tuators (and the glue layers simultaneously), are denoted
commonly with coordinates {xs} and {ℓs} respectively,
s = 1, 2, . . . , ns.

Fig. 2. Distribution of actuators and glue layers on the
beam.

Let P = {E, J, h, ρ, S} means the physical and geo-
metrical parameters of the beam, actuators and glue,
i.e. {Young's modulus, moment of inertia of the cross-
-section, thickness, mass density, area of the cross-
-section}, respectively. To be more precise, all pa-
rameters are supplemented with additional index ϑ =
{b, a, g} = {[b]eam, [a]ctuator, [g]lue}, for example, Jϑ
means moments of inertia of the surface cross-sections.
The parameters of the BAM system may be written as

P = Pb +
∑
s

PsH(x1s − x2s) = Pb +
∑
s

Ps⟨H⟩0,

(2.6)

where Ps = Pa+Pg, ⟨H⟩0 = H(x1s−x2s) = H(x−x1s)−
H(x−x2s), H(x−x1s) � the Heaviside step function in
point x1s and so on, {x1s, x2s} = {xs − ℓs/2, xs + ℓs/2}.
Considering dynamic e�ects of the actuators and glue

on the beam vibration, Eq. (2.1) takes the form(
EbJb +

∑
s

EsJs⟨H⟩0
)
D4u

+

(
ρbSb +

∑
s

ρsSs⟨H⟩0
)
D2

t u = 0. (2.7)

Equation (2.7) may be written down exactly the same
like Eq. (2.1), if one denotes

EJ = EbJb +
∑
s

EsJs⟨H⟩0,

ρS = ρbSb +
∑
s

ρsSs⟨H⟩0, (2.8)

where EJ � equivalent bending sti�ness, Js � cross-
-sectional moment of inertia of the s-th layer relative to
the mid-plane [15].

2.2. Beam with masses

This problem corresponds to the one given in previ-
ous subsection; it is not the same, however, there are
many similarities. Let a few masses be attached to the
beam [22, 1]. They are marked by {mr}, r = 1, 2, . . . , nr

and their distribution is described with set of coordinates
{xr}, see Fig. 3, hence

αr =
∑
r

mrδ(x− xr) = m1δ(x− x1)

+m2δ(x− x2) + . . .+mrδ(x− xr) + . . . (2.9)

where δ(.) � the Dirac delta distribution.

Fig. 3. Distribution of the concentrated masses on the
beam.

The dynamic e�ects of the {mr} may be include in
Eq. (2.1), hence

EJD4u+ (ρS + αr)D
2
tu = 0. (2.10)

2.3. Beam with actuators and masses

If the EJ , ρS take the form given by Eq. (2.8),
Eq. (2.10) governs the modal vibration of the BAM sys-
tem and in explicit form one has(

EbJb +
∑
s

EsJs⟨H⟩0
)
D4u

+

(
ρbSb +

∑
s

ρsSs⟨H⟩0 + αr

)
D2

tu = 0. (2.11)

On the ground of the EJ , ρS and αr form, Eq. (2.11)
cannot be understood in a classical manner. To solve it,
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some methods may be applied. One of them is presented
in [1, 4, 18]; another attitude may be found in [19] and
it is applied here.

3. Solution of the modal problem

At the attitude to the modal analysis given in [19], the
system is divided into j elements, j = 1, 2, . . . , nj , Fig. 4.
No losses of the generality, masses are attached to the
beam at the ends of actuators. So, the discretization is
imposed by masses. Hence, the elements between masses
become uniform, i.e. both EJ and ρS, described with
Eq. (2.8), are constant. All elements may be considered
separately in local coordinates, x ∈ [0, ej), Fig. 5, and
the solution to Eq. (2.11) can be expressed as

u(x, t) =
∑
j

uj(x, t), (3.1)

where uj(x, t) ful�lls the equation, which arise out of
Eq. (2.11),

EjJjD
4uj(x, t) + ρjSjD

2
tuj(x, t) = 0, (3.2)

where EjJj and ρjSj are di�erent on the separate ele-
ments and they are given by Eq. (2.8).

Fig. 4. Geometry of the general BAM system.

Fig. 5. Geometry of the general BAM system in local
coordinates.

As can be seen from Eq. (3.2), the dynamic e�ect of the
actuators and glue layers only are taken into account, but
this e�ect of the masses is omitted. This is because the
concentrated masses {mr} are considered in boundary
conditions for the j elements.
The boundary conditions for the j elements consist of

boundary conditions of the problem and coupling ones.
The latter are obtained by considering continuity of dis-
placement, slope, the relationship between the shear force
and bending moment at the points between neighboring
elements.
Let the solution to Eq. (3.2) be represented by a prod-

uct of spatial and temporal functions

uj(x, t) = Xj(x)T (t). (3.3)

Substitute Eq. (3.3) into Eq. (3.2), and bring terms con-
taining x to the left hand side (LHS) and terms contain-
ing t to the right hand side (RHS), then one obtains

EjJj
ρjSj

D4Xj(x)

Xj(x)
= −D2

tT (t)

T (t)
= ω2, (3.4)

where ω is de�ned as a constant and it is a natural fre-
quency of the BAM system.

Equation (3.4) corresponds to the two ordinary di�er-
ential equations, namely

D4Xj(x)− λ4
jXj(x) = 0, (3.5)

D2
tT (t) + ω2T (t) = 0, (3.6)

where the dispersion relationship to Eq. (3.5) is given by

λ4
j = ω2 ρjSj

EjJj
=

ω2

γj
. (3.7)

The solution of above equations provides the natural fre-
quencies and the corresponding modes. The λj are dif-
ferent on separate elements and they are yet to be de-
termined. Furthermore, the λj depend on ω which is
unchanging for all BAM system.
In view of mnemonic way of di�erentiation and inte-

gration of the Krylov functions, [20], the general solution
to Eq. (3.5) is given by

Xj(x) = AjK1(λjx) +BjK2(λjx) + CjK3(λjx)

+DjK4(λjx), (3.8)
where

K1(z) = [ch(z) + cos(z)]/2,

K2(z) = [sh(z)− sin(z)]/2,

K3(z) = [ch(z)− cos(z)]/2,

K4(z) = [sh(z) + sin(z)]/2. (3.9)

The boundary conditions to the separate j element in
local coordinates x ∈ [0, ej ] and harmonic steady state,
have the general form:
• boundary conditions at the left end of the 1st element

X1(0) = 0,

D2X1(0) = 0. (3.10)

• coupling conditions between j-th and (j + 1)-th ele-
ments, Fig. 6,

Xj(λjej) = Xj+1(0),

DXj(λjej) = DXj+1(0),

EjJjD
2Xj(λjej) = Ej+1Jj+1D

2Xj+1(0),

EjJjD
3Xj(λjej) +mj+1ω

2Xj(λjej)

= Ej+1Jj+1D
3Xj+1(0),

or

EjJjD
3Xj(λjej)

= mj+1ω
2Xj+1(0) + Ej+1Jj+1D

3Xj+1(0). (3.11)

From numerical point of view, the last identity in
Eq. (3.11) is more convenient.

Fig. 6. Coupling conditions between 1st and 2nd ele-
ments.

• boundary conditions at the right end of the nj-th
element

Xnj (enj ) = 0,
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D2Xnj (enj ) = 0. (3.12)

Since λ1 ̸= λ2 ̸= . . . ̸= λj ̸= . . . then, to calculate
them, Eq. (3.7) must be used. It is convenient to ex-
press {λ2, λ3, . . . , λj , . . .} as a function λ1, hence

λ4
1γ1 = λ4

2γ2 = . . . = λ4
jγj = . . . = ω2 (3.13)

or

λ4
2 = λ4

1(γ1/γ2),

λ4
3 = λ4

1(γ1/γ3), . . . λ
4
j = λ4

1(γ1/γj), . . . (3.14)

Substituting Eq. (3.8) into boundary conditions (3.10) it
appears that A1 = 0, C1 = 0. In the same way, the rest
of conditions given by Eqs. (3.11), (3.12) leads to the set
of algebraic equations and it may be written in the ma-
trix form

Aa = 0. (3.15)

In general, the matrix A is too large to present it in
explicit form. A simple example is considered in Sect. 5.

4. Orthogonality condition

This property of the uniform beam modes may be
found in [20, 21]. First of all, the identity is derived,
i.e. based on twice integration by parts, one has∫ ℓ

0

XνD
4Xµdx =

(
XνD

3Xµ −DXνD
2Xµ

)∣∣ℓ
0

+

∫ ℓ

0

D2XνD
2Xµdx. (4.1)

For simplicity, here and in the future, an argument (x)
is omitted. The separate modes Xµ(x) and Xν(x) ful�ll
the modal equations, cf. Eq. (3.5). For convenience they
are written down in expanded form

EJD4Xν(x) = ω2
νρSXν(x), (4.2)

EJD4Xµ(x) = ω2
µρSXµ(x). (4.3)

Multiplying above equations by Xν(x) and Xµ(x), re-
spectively, integrate both in range of integration x ∈
[0, ℓ], use Eq. (4.1), subtract the second result from the
�rst one and then one obtains(

ω2
ν − ω2

µ

)
ρS

∫ ℓ

0

XνXµdx

= EJ
[(
XµD

3Xν −DXµD
2Xν

)
−
(
XνD

3Xµ −DXνD
2Xµ

)]∣∣ℓ
0
. (4.4)

For standard boundary conditions, the right-hand-side
equals zero, and standard form of the orthogonality con-
dition is obtained.
The above orthogonality condition may be adapted to

the BAM system in a simple way. Let the system be
divided into nj elements as depicted in Fig. 4. Now,
Eq. (4.1) must be applied to the separate j element,
namely∫ ej

0

XjνD
4Xjµdx =

(
XjνD

3Xjµ −DXjνD
2Xjµ

)∣∣ej
0

+

∫ ej

0

D2XjνD
2Xjµdx. (4.5)

Considering both boundary conditions of the problem

and coupling conditions between neighboring elements,
Eqs. (3.10)�(3.12), instead of Eq. (4.4) one has(

ω2
ν − ω2

µ

)(
ρ1S1

∫ e1

0

X1νX1µdx+ . . .+ ρnjSnj

×
∫ enj

0

XnjνXnjµdx+m1X1ν(0)X1µ(0) + . . .

+mnjXnjν(0)Xnjµ(0)

+mnj+1Xnjν(enj )Xnjµ(enj )

)
= EnjJnj

[(
Xnjµ(enj )D

3Xnjν(enj )

−DXnjµ(enj )D
2Xnjν(enj )

)
−
(
Xnjν(enj )D

3Xnjµ(enj )

−DXnjν(enj
)D2Xnjµ(enj

)
)]
. (4.6)

Because of Eq. (3.12), the right-hand-side is zero. Fur-
thermore, the m1 and mnj+1 contribute no dynamic ef-
fects and they may be omitted. So, the general orthogo-
nality condition is given by(

ω2
ν − ω2

µ

)∑
j

(
ρjSj

∫
j

Xjν(x)Xjµ(x)dx

+mj+1Xj+1ν(0)Xj+1µ(0)

)
= 0. (4.7)

Since the term ω2
ν − ω2

µ is cancelled for µ = ν, one has∑
j

(
ρjSj

∫
j

Xjν(x)Xjµ(x)dx

+mj+1Xj+1ν(0)Xj+1µ(0)

)
=

{
0, ν ̸= µ,

βν , ν = µ.
(4.8)

Since the mj at x = {0, ℓ} may be omitted a priori, the
masses may be described as depicted in Fig. 7. For this
case, instead of Eq. (4.8), the orthogonality condition for
the BAM system is given by∑

j

(
ρjSj

∫
j

Xjν(x)Xjµ(x)dx+mjXjν(ej)Xjµ(ej)

)

=

{
0, ν ̸= µ,

βν , ν = µ,
(4.9)

where mnj ought to be assumed equal to zero.

Fig. 7. Geometry of nj elements and masses which
take an active part in the dynamic e�ect.

Both Eqs. (4.8) and (4.9) assure the same results, but
the former is numerically faster. Generally speaking, ei-
ther Eq. (4.8) or Eq. (4.9) may be used in deriving the
solution to the forced vibration problem.
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5. Examples

5.1. A simple modal problem

Let consider the problem presented in Fig. 6, where

j = 1, 2, {mr} = {m1,m2,m3}. Since m1 and m3 are
placed at the ends of the simple supported beam, their
dynamic e�ects are equal to zeros. So, only m2 should
be considered. In this simple case one has

A =



K ′
2 K ′

4

λ1K
′
3 λ1K

′
1

λ2
1E1J1K

′
4 λ2

1E1J1K
′
2

λ3
1E1J1K

′
1 λ3

1E1J1K
′
3

−1 0 0 0

0 0 0 −λ2

0 0 −λ2
2E2J2 0

−m2ω
2 −λ3

2E2J2 0 0

0

K ′′
1 K ′′

2 K ′′
3 K ′′

4

λ2K
′′
2 λ2K

′′
3 λ2K

′′
4 λ2K

′′
1

λ2
2E2J2K

′′
3 λ2

2E2J2K
′′
4 λ2

2E2J2K
′′
1 λ2

2E2J2K
′′
2

λ3
2E2J2K

′′
4 λ3

2E2J2K
′′
1 λ3

2E2J2K
′′
2 λ3

2E2J2K
′′
3


, (5.1)

where the symbols in matrices are given by

{Kυ} = {K1,K2,K3,K4}, K ′
υ = Kυ(λ1e1),

K ′′
υ = Kυ(λ2e2). (5.2)

The unknowns are collected in column matrix

a = [B1, D1, A2, B2, C2, D2]
T
. (5.3)

It seems that this simple example well conveys the cre-
ating idea of the main matrix A.
To solve Eq. (3.15), one assumes that detA(λ1) = 0

and it leads to the frequency equation. As the result,
the set {λ1ν}, ν = 1, 2, . . . , n is obtained. Based on
Eq. (3.14), one can calculate {λ2ν , λ3ν , . . . , λjν , . . .} and
�nally, based on Eq. (3.7), the natural frequencies {ων}
of the BAM system.
Now, the unknowns a, Eq. (5.3), should be determined.

Let the main matrix elements be written as two suf-
�x quantities Aαβ , where α and β label the rows and
columns respectively. Let Mαβ be the minor of the Aαβ

element. The general solution to Eq. (3.15) is

B1 : D1 : A2 : . . .

= (−1)α+1Mα1 : (−1)α+2Mα2 : (−1)α+3Mα3 : . . .

(5.4)

Substituting {λjν} and unknowns a to Eq. (3.8), the ν
modes assigned to the j element are obtained. The solu-
tion to Eq. (3.5) for the BAM system is given by

X(x) =
∑
j

Xj(x) =
∑
jν

Xj(λjνx) =
∑
jν

Xjν(x)

=
∑
ν

Xν(x), (5.5)

where
∑

jν(. . .) =
∑

j

∑
ν(. . .) and the separate modes

on j element are equal to

Xjν(x) = AjK1(λjνx) +BjK2(λjνx) + CjK3(λjνx)

+DjK4(λjνx). (5.6)

The ν modes Xν(x) are taken for future considerations.

5.2. Forced vibrations of the beam

To analyze the forced vibrations, the orthogonality
condition would have to be used. This analysis is re-
alized in some steps. In the following they are presented,
omitting everywhere for simplicity, the subscript j. So,
the analysis is much the same like for the uniform beam.
1. Let be the (nonhomogeneous) equation of the forced

beam vibration

EJ
(
D4uf (x, t) + µdD

4(Dtuf (x, t))
)
+ ρSD2

tuf (x, t)

= −f(x, t), (5.7)

where hereafter uf (x, t) = uf ;j(x, t) � forced vibration
of the j element, µd � inner damping factor.
2. To �nd the forced solution, apply the Fourier

method

uf (x, t) =
∑
ν

uf ;ν(x, t) =
∑
ν

Xν(x)Tν(t). (5.8)

3. Substitute Eq. (5.8) in Eq. (5.7), hence

EJ
∑
ν

D4Xν(x)(µdDtTν(t) + Tν(t))

+ ρS
∑
ν

Xν(x)D
2
tTν(t) = −fx(x)ft(t), (5.9)

where the excited force is assumed as f(x, t) = fx(x)ft(t).
4. Apply to the �rst term on the LHS Eq. (3.5): here

D4Xν(x) = λ4
νXν(x), divide by ρS, apply the dispersion

condition, Eq. (3.7): here λ4
ν = (ρS/EJ)ω2

ν ; it leads to∑
ν

ω2
νXν(x)[µdDtTν(t) + Tν(t)] +

∑
ν

Xν(x)D
2
tTν(t)

= − 1

ρS
fx(x)ft(t). (5.10)

5. Multiple by Xµ(x) and integrate with respect to
x ∈ [0, ℓ]. At just this step, it is the �rst time the orthog-
onality condition Eq. (4.4) is used. It leads to the time
equation

D2
tTν(t) + µdω

2
νDtTν(t) + ω2

νTν(t) = D̄νft(t), (5.11)

where
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D̄ν =
1

ρS

1

βν
Iν , Iν = −

∫ ℓ

0

fx(x)Xν(x)dx. (5.12)

6. De�ne the initial condition for Tν(t), for example

u(x, 0) = u(x, t)|t=0 = û(x),

Dtu(x, 0) = Dtu(x, t)|t=0 = v̂(x). (5.13)

7. Substitute Eq. (5.8) in Eq. (5.13), multiple byXµ(x)
and integrate with respect to x ∈ [0, ℓ]. At this step, it
is the second time the orthogonality condition Eq. (4.4)
is used; it leads to

Tν(0) =
1

βν

∫ ℓ

0

û(x)Xν(x)dx,

DtTν(0) =
1

βν

∫ ℓ

0

v̂(x)Xν(x)dx. (5.14)

8. Assume the RHS of Eq. (5.11) in the form

ft(t) = exp(iωf t), (5.15)

where ωf � forced annular frequency, i = (−1)1/2.
9. For the sake of Eq. (5.15), the suitable solution of

nonhomogeneous time Eq. (5.11) is

Tν(t) = C̄ exp(iωf t), (5.16)

where C̄ � unknown constant.
10. Substitute Eqs. (5.15) and (5.16) in Eq. (5.11),

hence

C̄ = C̄ν =
1

ω2
ν − ω2

f

D̄ν =
1

αν

1

ρS

1

βν
Iν = C∗

νIν . (5.17)

11. Substitute Eq. (5.16) in Eq. (5.8), hence

uf (x, t) =
∑
ν

uf ;ν(x, t) =
∑
ν

C̄νXν(x) exp(iωf t).

(5.18)

12. The �nal solution of the forced vibrations is given
by

uf (x, t) =
∑
j

uf ;j(x, t). (5.19)

As can be seen, the orthogonality condition of the modes
is necessary to solve the forced vibration problem using
the Fourier method.

6. Conclusions

In this paper, the orthogonality condition of the modes
of the speci�c mechanical system is derived. The system
consists of the simple supported beam, actuators and
concentrated masses. Hence, the system may have the
technical interpretation. All physical quantities of the
system components are considered, among other things,
the mass and sti�ness of both actuators and glue layers.
So, the condition may be directly applied to the solution
of the beam active vibration reduction problem. This
procedure is outlined in Sect. 5.

Quite similar, the orthogonality condition of the modes
for other boundary conditions and free combination of
actuators and concentrated masses may be derived.
As pointed out in the paper, each active beam vibra-

tion reduction problem may be solved analytically, even
if the dynamic e�ects of the actuators and glue are con-
sidered.
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