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On the Quantum Transport through an Asymmetric
Aharonov–Bohm Ring with Rashba Spin–Orbit Interaction
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The transmission amplitude through an asymmetric Aharonov–Bohm ring is derived analytically, in the
presence of the Rashba spin–orbit interaction. For this purpose, one resorts to the transfer matrix method.
The conductance is established in terms of the Landauer formalism and it is analyzed for different values of the
asymmetry and ring-lead coupling parameters. A theoretical proposal to use the asymmetric ring like a spin
filtering device is discussed, by an adequate tuning of the Aharonov–Bohm and Aharonov–Casher phases (via the
magnetic field and the Rashba parameter).
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1. Introduction

The spin dependent transport through mesoscopic sys-
tems has become a very interesting topic in the last years.
There has been a growing interest in the so-called spin-
tronic devices that are based on the spin properties of
the electrons. In this new field of research, the major
goal is the coherent transport and manipulation of spin
in mesoscopic semiconductor devices [1, 2]. A fundamen-
tal concept in semiconductor spintronics is the control of
spin through spin–orbit interaction (SOI), where the or-
bital motion of electrons is coupled with the orientation
of electron spins [3]. There are two types of SOI which are
relevant for semiconductor spintronics: the Rashba SOI,
induced by the asymmetry associated with the confining
potential in the growth direction [4] and the Dresselhaus
SOI, which is a result of the inversion asymmetry of the
bulk crystal [5]. The Rashba coupling becomes impor-
tant in semiconductors with a small band gap [6] and
the coupling parameter can be tuned by an external gate
voltage [7, 8]. The Dresselhaus SOI dominates in the
semiconductors with a wide band gap [9] while the re-
lated coupling is a material constant.

An important mesoscopic device for the study of the
quantum interference phenomena is the quantum ring.
The Aharonov–Bohm (AB) [10] and Aharonov–Casher
(AC) [11] effects are typical manifestations of quantum
interference in such type of structures. In a coherent ring
threaded by external magnetic flux the wave function of
the electron acquires an AB phase. In the presence of
the Rashba SOI, the so-called AC phase has also to be
accounted for.
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The spin-dependent properties of quantum rings with
the Rashba coupling were studied in many papers
[12–17], symmetric rings being utilized in most cases. On
the other hand, recently there has been a growing interest
for asymmetric configurations, in which the asymmetry
has a great influence on the electron transport [18–24].

Some of the theoretical papers in this area [20–23] are
focused on the investigation of the transport properties
for asymmetric rings subject to magnetic flux, using the
standard transfer matrix formalism [25]. Motivated by
these works, we will study in this paper the case in which
a one-dimensional and asymmetric ring (with unequal
lengths of the arms) is subject to both magnetic flux
and the Rashba SOI, considering different coupling pa-
rameters between the leads and the ring. Other details
concerning the transport through asymmetric AB rings
in the presence of the Rashba SOI have also been dis-
cussed [26], now with a special emphasis on the role of a
delta-barrier.

The paper is organized as follows: In Sect. 2, the one-
-electron problem for the asymmetric AB ring in pres-
ence of the Rashba SOI is given, according to Ref. [15].
At the end of this section, the transmission amplitude
is analytically derived using the transfer matrix formal-
ism [25] and the conductance is obtained, in the Landauer
formalism [27]. In Sect. 3, the influence of the AB mag-
netic flux and the Rashba SOI on the conductance of the
asymmetric AB ring is investigated numerically and the
concluding remarks are given in Sect. 4.

2. Formalism
2.1. The one-electron Hamiltonian and energy spectrum
We consider a one-dimensional AB ring of radius R

in the x–y plane, asymmetrically coupled to two semi-
-infinite leads, in the presence of electric and magnetic
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fields (Fig. 1a). The electric field ER is time independent
and originates from an asymmetric confinement along the
z-direction.

Fig. 1. (a) AB asymmetric ring with Rashba SOI; the
electric field ER is perpendicular on the plane of the
ring; the magnetic field BR is in the radial direction and
its sense depends on the movement directions (clockwise
or counterclockwise). (b) Tilt angle θ1 (θ2) for the up
(down) states. (c) Incoming and outgoing amplitudes
at the junctions of the ring.

In the reference frame of the moving electron, a mag-
netic field BR is generated, which is perpendicular to the
electric field and to the movement direction. The exter-
nal (and time independent) magnetic field B = ∇×A is
pointing in the z-direction, where the vector potential A
has the components (0, 0, Φ/2πR) in cylindrical coordi-
nates. The AB magnetic flux piercing the ring is denoted
by Φ.

The 2D one-electron Hamiltonian in the presence of
the magnetic field and Rashba SOI reads [14]:

H =
1

2m∗ (p− eA)2 +
αR

~
[σ × (p− eA)]z

−µB · σ + V (r) . (1)

Here, αR is the Rashba coupling constant, σ = (σx, σy,
σz) are the spin Pauli matrices, µ is the Zeeman cou-
pling constant for the electron and V (r) is the confining
potential, whereas the effective mass is denoted by m∗.

For a weak magnetic field, the Zeeeman term can be
neglected and, in the limit of a very narrow ring, the 1D
dimensionless Hamiltonian reads [15, 28]:

H =
(
− i

∂

∂ϕ
+

ξ

2
σr − Φ

Φ0

)2

, (2)

where ϕ is the polar angle, ξ = 2m∗ RαR/~2 is the di-
mensionless spin–orbit coupling strength, σr = σx cosϕ+
σy sin ϕ and Φ0 = h/e is the flux quantum.

The energy spectrum for the Hamiltonian in Eq. (2)
reads [15]:

Eσ
n =

(
n− Φσ

AC

2π
− ΦAB

2π

)2

, (3)

where n ∈ Z is the orbital quantum number, σ is the
spin index (σ = 1(↑) for the spin-up and σ = 2(↓) for
the spin-down), ΦAB is the AB phase acquired by the

charged particle in the quantum ring [15]:

ΦAB = 2π
Φ
Φ0

(4)

and Φσ
AC is the AC phase [15]:

Φσ
AC = −π

(
1 + (−1)σ

√
ξ2 + 1

)
. (5)

The corresponding eigenstates are given by

ψσ
n(ϕ) = exp(inϕ)× χσ

n(ϕ) , (6)

where χσ
n(ϕ) are orthogonal spinors. These spinors can

be expressed in terms of the eigenvectors (1, 0)T, (0, 1)T
of the Pauli matrix σz as

χ(1)
n (ϕ) =

1√
2π

[
cos θ1

2 , exp(iϕ)× sin θ1
2

]T

, (7)

χ(2)
n (ϕ) =

1√
2π

[
cos θ2

2 , − exp(iϕ)× sin θ2
2

]T

, (8)

where T stands for the transpose of the matrix and θ1 (θ2)
is the spin-up (spin-down) tilt angle relative to the z
direction.

For the spin-up and spin-down eigenstates, the tilt an-
gle is given by the relations tan(θ1) = ξ and θ2 = π− θ1,
respectively (Fig. 1b). For a ring which is not connected
to leads, the quantum number n is integer, due to the
periodicity condition

ψσ
n(ϕ) = ψσ

n(ϕ + 2πm) , m ∈ Z . (9)

When the ring is coupled to leads, this boundary con-
dition is altered and the quantum number n may be any
real number allowed by the energy of the electron.

There are two limit cases i.e. the strong coupling (adi-
abatic regime) when ξ À 1 and the weak coupling (non-
-adiabatic regime) when ξ ¿ 1 [14]. In the adiabatic
limit, the spin eigenstates follow the local direction of
the magnetic field BR, the spins being aligned parallel
or antiparallel to the magnetic field.

2.2. The transmission amplitude of the asymmetric
AB ring

The AB ring illustrated in Fig. 1a is asymmetrically
coupled to the external leads at the quantum point con-
tacts J1 and J2. The motion of the electron through this
ring is ballistic and thus the spin-flip processes are ne-
glected. In addition, the adiabatic regime is considered,
in which the electrons with spin-up and spin-down move
independently through the ring (transitions between the
two spin channels are not possible).

In this situation, we can obtain analytically the trans-
mission amplitude and the conductance, using the trans-
fer matrix method, with the scattering matrix of the
form [25]:

S =



−(a + b)

√
ε
√

ε√
ε a b√
ε b a


, (10)

where a = ±((1− 2ε)1/2 − 1)/2 and b = ±((1− 2ε)1/2 +
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1)/2 with 0 ≤ ε ≤ 1/2, ε being the coupling parameter
(ε = 1/2 corresponds to fully transparent contacts and
ε = 0 corresponds to totally reflective contacts).

We consider an incident wave (of unit amplitude, α1 =
1) that comes from the left lead with fixed Fermi energy,
propagates coherently through the ring branches and it
is transmitted to the right lead. It can be mentioned that
when the Rashba SOI is taken into account, the electrons
in the ring have different wave numbers, depending on the
direction of propagation (clockwise or counterclockwise)
and on spin orientation (σ = 1, 2).

The wave amplitudes in the upper (lower) arm of the
asymmetric AB ring (Fig. 1c) are inter-related according
to [25]:(

β2

β′2

)
= tσI

(
β′1
β1

)
;

(
γ1

γ′1

)
= tσII

(
γ′2
γ2

)
, (11)

where tσI (tσII) denotes the transfer matrix for the upper
(lower) arm.

For ballistic transport through the arms of the asym-
metric AB ring, the transfer matrices read

tσI = exp(− iχσ
u)×

(
exp(iϕu) 0

0 exp(− iϕu)

)
, (12)

tσII = exp(− iχσ
d)×

(
exp(iϕd) 0

0 exp(− iϕd)

)
. (13)

Here ϕu (ϕd) is the dynamic phase acquired by an elec-
tron with spin-up or spin-down traversing the upper
(lower) arm in the clockwise direction. χσ

u (χσ
d) is the

phase acquired by the electron with spin-up or spin-down
in the upper (lower) arm in the presence of the AB flux
and Rashba SOI.

An asymmetry factor like F = (1 − Fa)/((1 + Fa),
where Fa = Ld/Lu, in which Ld (Lu) is the length of
the lower (upper) arm, can also be introduced [29]. Due
to the unequal lengths of the ring arms, the phases ϕu

and ϕd are different

ϕu = kLu = kπR(1 + F ) , (14)

ϕd = kLd = kπR(1− F ). (15)

The phases χσ
u and χσ

d are then given by

χσ
u = (ΦAB + Φσ

AC)
1 + F

2
, (16)

χσ
d = (ΦAB + Φσ

AC)
1− F

2
. (17)

Assuming that α2 = 0, the transmission amplitude in the
right lead is given by [25]:

Tσ = α′2 = − ε

b2

(
b− a, 1

)
tσI (Mσ)−1

(
b− a

−1

)
,

(18)
with

Mσ = tLtσIItLtσI −
(

1 0
0 1

)
, (19)

tL =
1
b

(
b2 − a2 a

−a 1

)
. (20)

From Eqs. (18), (19) and (20) the analytical expression
for the transmission amplitude results

Tσ(η, ξ, F ) = iε
[
exp

(
i
Φσ

2
(1− F )

)
sin

(η

2
(1 + F )

)

+exp
(
− i

Φσ

2
(1 + F )

)
sin

(η

2
(1− F )

)]

/[
a2 cos(ηF ) + b2 cos(Φσ) + (ε− 1) cos(η) + iε sin(η)

]
,

(21)
where Φσ = ΦAB + Φσ

AC and η = 2πkR.
For the coupling parameter ε = 4/9 (strong but not

maximal ring-lead coupling), the transmission amplitude
coincides with those from Ref. [29], for ΦAB = 0. This
value for ε corresponds to the approach of the quantum
waveguide theory, in which the (spin-dependent) Griffith
boundary conditions are used for obtaining the transmis-
sion amplitude [30].

If ε = 4/9 and F = 0 (symmetric ring), one has

Tσ(η, ξ, F ) =
8i cos(Φσ/2) sin(η/2)

1− 5 cos(η) + 4 cos(Φσ) + 4i sin(η)
,

(22)
which reproduces the result done before [15] if ΦAB = 0.

The conductance of the mesoscopic system, in the Lan-
dauer formalism, is given by [27]:

G =
e2

h

∑

σ=↑,↓
|Tσ|2 = G↑ + G↓, (23)

which will be applied hereafter.

3. Numerical results and further details

3.1. Free system (Φσ = 0)

As a first step, the behaviour of the conductance in a
free system function of the asymmetry parameter and the
coupling strength will be analysed. Concerning the asym-
metry, an important aspect is that for a certain coupling
limit, a very small difference between the ring branches
leads to the appearance of the periodical conductance
zeros, as a consequence of the asymmetry-dependent in-
terference conditions.

In Fig. 2 the dimensionless conductance function of η
is represented, for a maximal coupling between the leads
and ring and for different and very small values of the
asymmetry parameter. For a symmetric ring (F = 0),
the absence of the backscattering effects leads to a perfect
transmission and the conductance is a constant function
(straight solid line in Fig. 2). A very small ring asymme-
try, F = 0.0256 (corresponding to Ld = 0.95Lu), induces
a change in the transmission probability and periodical
conductance zeros appear (dashed line in Fig. 2). By in-
creasing the difference in length between the ring arms
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(F = 0.0526 or Ld = 0.9Lu), the conductance asymmetry
is enhanced (solid line in Fig. 2).

Fig. 2. The dimensionless conductance function of η,
in the case of strong coupling limit (ε = 1/2), for F = 0
(straight line), F = 0.0256 (dashed line) and F = 0.0526
(solid line).

If the coupling between the leads and ring is decreased,
the imperfect transmission (as a consequence of backscat-
tering effects) leads to appearance of the periodical con-
ductance oscillations [25]. These oscillations are dis-
played in Fig. 3 for a symmetric (F = 0) configura-
tion (dashed curves) and for an asymmetric configuration
with the asymmetry parameter F = 1/3 (solid curves),
at two different values of the coupling strength.

Fig. 3. The dimensionless conductance as function of η
for different values of the coupling strength: (a) ε = 4/9;
(b) ε = 1/4. The dashed line corresponds to the sym-
metric ring (F = 0) and the solid line to an asymmetric
ring with Ld = 0.5Lu (F = 1/3).

In the free ring different resonant states appear, due
to the time reversal symmetry and the zero conductance
resonances (antiresonances) are a manifestation of the
destructive interference of such resonant states. It must
be pointed out that the antiresonances are characterized
by a typical zero-pole structure in the complex energy
plane [29, 31].

For the symmetric ring (Fig. 3) the period of the con-
ductance oscillation is 2π and there are no conductance
zeros (antiresonances) due to the compensation of all ze-
ros of the transmission amplitude with the corresponding
poles. For asymmetric ring, the period of conductance
oscillations strongly depends on the asymmetry parame-
ter F .

One has to realize that, in general, the ratio between
the lower and upper arms of the asymmetric ring is of
the form Ld/Lu = l1/l2, where l1 and l2 (l1 < l2) are
expressed by non-zero real numbers. In these cases, the
period of conductance oscillations can be very large. For
example, if l1 = 1.1 and l2 = 3.1, the asymmetry param-
eter is F = (l2− l1)/(l2 + l1) = 1/(2.1) and the period of
conductance oscillations is 42π.

In the following the geometries will be used in which
l1, l2 are non-zero integers and l1 < l2. Then the period
of conductance oscillation can be much reduced. For ex-
ample, if l1 = 5 and l2 = 7, the asymmetry parameter
is F = 1/6 and the period of conductance oscillations is
12π. The increase of the parameter l2 leads to a decrease
of the period.

In the asymmetric ring two types of periodical con-
ductance zeros appear. The first type of zeros, η1 = 2mπ
(m ∈ Z), corresponds to the eigenstates of the closed
system and the second type, η2 = (2m + 1)π/F , is a
consequence of the asymmetry [29]. In these points, the
interference condition at the right junction can be con-
trolled by the asymmetry parameter F .

One can observe in Fig. 3 the asymmetric shape (Fano-
-type [32]) of the antiresonances in the vicinity of the
points η = 2π, 4π, 8π, and 10π, which is specific for the
asymmetric configurations. There are some first type-
-zeros of the transmission amplitude which are compen-
sated by the poles. For F = 1/3 and η ∈ [0, 12π]
(solid curve), the compensated zeros are at η = 0, 6π
and 12π and the conductance has a maximum value in
these points. The zeros of the second type are localized
at η = 3π and η = 9π, respectively. For other geometries,
the location of these zeros on the η axis depends on the
asymmetry parameter.

Concerning the dependence of the conductance on the
coupling between the leads and the asymmetric ring, we
can see from Fig. 3 that with increase of the coupling
parameter, the Fano-type antiresonances become more
pronounced. For clearly viewing this effect, in Fig. 4
the dimensionless conductance function of the parame-
ter η is represented, for asymmetry parameter F = 1/3
and for three values of the coupling parameter: ε = 1/4
(dotted line), ε = 4/9 (dashed line) and ε = 1/2 (solid
line). For a fixed value of the asymmetry, the width of
the (Fano-type) antiresonance is progressively broadened
with increase of the coupling parameter. In addition,
the increase of this parameter leads to an increase of the
imaginary part for the complex poles of the transmission
amplitude.

Close to η = 2π one such pole is located at η =
6.27457 − 0.172133i , η = 6.20167 − 0.513457i and η =
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Fig. 4. The dimensionless conductance function of η
for three values of the coupling parameter: ε = 1/4
(dotted line), ε = 4/9 (dashed line) and ε = 1/2 (solid
line); the asymmetry parameter is F = 1/3.

5.79649 − 1.03972i , for ε = 1/4, 4/9 and 1/2, respec-
tively. The different values of the real part indicate a
change of the conductance value at the variation of the
coupling parameter.

The locations on the η axis for both types of zeros are
not affected by this transition from the weak to the strong
coupling regime. Therefore, the width of the resonances
is changed, depending on the coupling strength.

3.2. The conductance in the presence of AB flux,
but without Rashba SOI

It is known that the action of the exterior magnetic
field leads to the removing of certain conductance ze-
ros, due to the breaking of the time-reversal symmetry
(TRS) [33]. The resulting AB flux produces changes in
the zero-pole structure and the transmission zeros can
be real or can be shifted away from the real energy-axis,
depending on the values of the AB phase [33].

For the beginning, there will be investigated only the
effect of the magnetic field without the Rashba SOI. For
this purpose, two cases are considered: one case in which
the AB magnetic flux is an integer or half-integer multiple
of the flux quantum and the other, when the ABmagnetic
flux is off from the integer or half-integer multiples of the
flux quantum.

The case in which the magnetic flux is an integer mul-
tiple of the flux quantum (the AB phase is ΦAB = 2mπ)
is equivalent with the case of zero magnetic flux (Fig. 3)
for both (symmetric and asymmetric) configurations.

If the magnetic flux is a half-integer multiple of the
flux quantum and the AB phase is ΦAB = (2m+1)π, the
transmission probability for the symmetric ring is zero
because of the destructive interference that appears for
any value of the ring length.

For the asymmetric ring, the conductance zeros are
given by the zeros of the transmission amplitude from
Eq. (21):

exp
(
− i

(2m + 1)π
2

F

)[
sin

(η

2
(1 + F )

)

− sin
(η

2
(1− F )

)]
= 0 . (24)

The solutions of this equation are

η′1 = (2m + 1)π and η′2 =
2mπ

F
,

m = 0, 1, 2, 3, . . . (25)

and the relations between the conductance zeros corre-
sponding to ΦAB = 2mπ (or free system) and ΦAB =
(2m + 1)π, respectively, are

η′1 = η1 + π and η′2 = η2 − π

F
. (26)

That is, for ΦAB = (2m + 1)π, the first (second) type
of transmission amplitude zeros corresponding to the free
system are shifted with π (−π/F ) on the η axis.

The dependence of the conductance function of η in
the case when ΦAB = (2m + 1)π is illustrated in Fig. 5,
for different values of the asymmetry parameter and the
coupling parameter. Concerning the asymmetry, three
different geometries for the AB ring have been consid-
ered, F = 1/6, F = 1/3 and F = 1/2, with the cor-
responding angle between the leads 150◦, 120◦ and 90◦,
respectively. The positions of the transmission amplitude
zeros for these asymmetric configurations are indicated in
Table I.

Fig. 5. The dimensionless conductance function of η
when ΦAB = (2m + 1)π, for F = 1/6 (a), F = 1/3 (b)
and F = 1/2 (c). The solid curves correspond to a cou-
pling parameter ε = 4/9 and the dashed correspond to
ε = 1/2 (at the right of every part there is illustrated the
ring with asymmetric contacts; the corresponding angle
between the leads is 150◦ (a), 120◦ (b) and 90◦ (c)).
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TABLE I

The transmission amplitude zeros corresponding to the asymmetric configurations in Fig. 5,
for ΦAB = 2mπ (free system) and ΦAB = (2m + 1)π.

Asymmetry ΦAB = 2mπ (free system) ΦAB = (2m + 1)π

η1 η2 η′1 η′2

1/6 0, 2π, 4π, 6π, 8π, 10π, 12π

(compensated: 0, 12π)
6π, 18π

π, 3π, 5π,
7π, 9π, 11π

0, 12π

1/3 0, 2π, 4π, 6π, 8π, 10π, 12π

(compensated: 0, 6π, 12π)
3π, 9π

π, 3π, 5π,
7π, 9π, 11π

0, 6π, 12π

1/2 0, 2π, 4π, 6π, 8π, 10π, 12π

(compensated: 0, 4π, 8π, 12π)
2π, 6π, 10π

π, 3π, 5π,
7π, 9π, 11π

0, 4π, 8π, 12π

TABLE II

Removed and persistent zeros of the transmission amplitude, for the asymmetric
configurations in Fig. 6, in the case when the AB flux is not an integer or half integer
multiple of the flux quantum.

Asymmetry Removed zeros,
of type η1 = 2mπ

Persistent zeros
η1 = 2mπ η2 = (2m + 1)π/F

1/6 2π, 4π, 6π, 8π, 10π 0, 12π –
1/3 2π, 4π, 8π, 10π 0, 6π, 12π 3π, 9π

1/2 2π, 6π, 10π 0, 4π, 8π, 12π –

One can see from Fig. 5 and Table I that for all selected
geometries, the first (second) type zeros for ΦAB = 2mπ
(including those which are compensated by the poles of
the transmission amplitude) are shifted with π (−π/F )
on the η axis for ΦAB = (2m+1)π. In this way, the com-
pensated zeros for free system (in which the conductance
has a maximum value) coincide with the second type ze-
ros for ΦAB = (2m + 1)π (in which the conductance is
zero). Another important aspect is the dependence of the
zeros η′2 on the ring asymmetry. Their number increase
with the increase of the asymmetry parameter. The con-
ductance zeros are not influenced by the variation of the
coupling strength and this leads to a variation of the res-
onances width.

For viewing the effect of the AB flux which is not an
integer or half integer multiple of the flux quantum, in
Fig. 6 the dimensionless conductance function of η is rep-
resented, for ΦAB = 2π0.3 (solid curves) and for free
system (ΦAB = 0, dashed curves), for comparison. The
value of the coupling parameter is set to ε = 4/9 and the
same values of the asymmetry parameter are used, like
in Fig. 5.

One may clearly see from Fig. 6 that certain first type-
-conductance zeros associated to the free system disap-
pear, due to the action of the magnetic field. Without
entering in detail, it must be mentioned that the remov-
ing of these conductance zeros is equivalent with a shift
of the transmission amplitude zeros away from the real-
-energy axis (see Ref. [33]).

Other conductance zeros of this type persist at the
action of the magnetic field, the transmission ampli-

tude zeros remaining on the real-energy axis [33]. These
persistent conductance zeros coincide with the zeros of
the transmission amplitude that are compensated by the
corresponding poles in the case of the free system (see
Table I and Table II).

For special asymmetries, there are second type-
-conductance zeros corresponding to the free system that
persist. Two of such persistent zeros, for F = 1/3, are
located at η = 3π and η = 9π (see Fig. 6 and Table II).

In addition, one has to realize that the action of an AB
magnetic flux which is off from the integer or half-integer
multiples of the flux quantum, leads to the transforma-
tion of the Fano-type antiresonances into simple oscil-
lations. This can be viewed, for example, in Fig. 6 for
the geometric configurations with F = 1/6 and F = 1/3.
Concerning the lead-ring coupling regime, in the presence
of the AB magnetic flux the variation of the coupling
strength leads to a changing of the profile of the reso-
nances, the positions of the transmission zeros remaining
unaffected.

3.3. The conductance in the presence of both AB flux
and Rashba SOI

In the presence of the Rashba SOI the time-reversal
symmetry is preserved but the spin-parity is broken. For
a symmetric AC ring, the effect of SOI leads to the ap-
pearance of the conductance zeros. For an asymmetric
AC ring, it is known that the SOI produces the removing
of some conductance zeros like in case of the asymmetric
AB ring (depending on the value of the AC phase) and,
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Fig. 6. The dimensionless conductance function of η
for F = 1/6 (a), F = 1/3 (b) and F = 1/2 (c). The
dashed curves correspond to the free system and the
solid curves correspond to the case when the AB flux is
not an integer (or half integer) multiple of the flux quan-
tum, ΦAB = 2π0.3. The coupling parameter is ε = 4/9.

regarding the symmetry breaking, there is an analogy be-
tween the effect of SOI and the effect of the AB flux for
the 1D ring [29].

So, in the following only an aspect will be investigated,
related of the possibility to obtain different spin-up and
spin-down conductances in the asymmetric AB rings, by
tuning the AB and AC phases. This is based on the fact
that the AB and AC phases, together with the asym-
metry parameter can produce changes in the zero-pole
structure.

At some values of these parameters, a compensation of
a certain zero with the corresponding pole of the trans-
mission amplitude can be realized for one spin channel.
Due to the compensation, one component of the conduc-
tance for that spin channel has a finite value. For the
other spin channel, that zero-pole pair cannot compen-
sate each other and the conductance is zero.

Suppose that in the presence of AB flux and Rashba
SOI, for one spin species, spin-up for example, the total
phase is

Φ↑ = ΦAB + Φ↑AC = 2mπ , with m = 1, 2, 3, . . . (27)

This may be satisfied for certain values of AB phase
and dimensionless Rashba parameter. If one takes ΦAB =
2qπ, with 0 < q < m (the parameter q must be non-
-integer (half integer) to obtain different spin-up and
spin-down components of the conductance), the dimen-
sionless Rashba parameter is given by the expression

ξ =
√

(2(m− q) + 1)2 − 1 . (28)

In this case, the total phase for the spin-down species
reads

Φ↓ = 2π(2q −m− 1) . (29)

One has to realize that, for such values of the phases
Φ↑ and Φ↓, in the persistent zeros of the spin-up trans-
mission amplitude which are compensated by the corre-
sponding poles in the case of free system, the spin-up
conductance has a finite (maximum) value and the spin-
-down conductance is zero.

In Fig. 7 the spin-up and spin-down conductances func-
tion of η are displayed, for the asymmetry parameter
F = 1/3 and for different values of the coupling param-
eter. The AB phase is set to ΦAB/2π = 0.08 and the
dimensionless Rashba parameter is ξ = 2.65812, which
satisfies the condition (28) for m = 1.

Fig. 7. The spin-up (solid line) and spin-down (dashed
line) conductances function of η, for F = 1/3 and
ε = 1/2 (a), ε = 4/9 (b), ε = 1/4 (c). The AB phase is
ΦAB/2π = 0.08 and the dimensionless Rashba parame-
ter is ξ = 2.65812.

For this configuration, if η = 2mπ (m — integer) ex-
cept the persistent zeros η = 0, 6π and 12π, the trans-
mission probability in the spin-up channel is zero (solid
curves in Fig. 7) and the transmission probability in the
spin-down channel has a non-zero value that depends on
the coupling parameter (dashed curves in Fig. 7).

At the persistent zeros (compensated by the poles in
the case of free system) localized in the points η = 0, 6π
and 12π, the AB ring is totally opaque for the spin-down
electrons and transparent for the spin-up electrons, for
any value of the coupling parameter. At the persistent
zeros localized in the points η = 3π and 9π the device
is in a totally reflective state. For another values of the
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asymmetry parameter, the location and the number of
the persistent zeros are changed. At the variation of the
coupling parameter, the behavior of the conductance is
the same like in the precedent cases.

So, tuning the AB and AC phases, the asymmetric AB
ring can act like a spin filter device and the efficiency
of the filtering process can be modified by changing the
coupling parameter and the asymmetry parameter.

It must be pointed that for a strong spin–orbit cou-
pling, the inter-subband mixing becomes important and
has a destructive effect on the filtration. One way to
minimize this subband mixing is to adjust the transverse
width of the AB rings in order to be very narrow com-
pared with their length (in practice, the real rings are not
quite strictly one-dimensional). In this case the energy
levels spacing resulting from the transversal confinement
become large. This can be verified experimentally using
e.g. the split-gate techniques [2, 34].

Moreover, it is known that in general, for a quantum
waveguide device, the number of the propagating chan-
nels is N = Int(kFw/π), in which kF is the Fermi wave
number and w is the width of the waveguide [34]. There-
fore, using selected Fermi energies of the incident elec-
trons through the AB ring and an adequate tuning of the
transverse width, one can reduce the number of channels
(subbands). So, the effect of the inter-subband mixing is
reduced and a better spin filtering can be obtained.

On the other hand, the inter-subband mixing can be
neglected if the width of the confining potential well
obeys the condition wC ¿ ~2/αRm∗ [35]. For an
InGaAs based AB ring with the radius R = 250 nm,
m∗ = 0.023me (where me is the free electron mass) and
a Rashba SOI coupling constant αR = 2 × 10−11 eV m
[7, 15], this corresponds to a dimensionless constant like
ξ ∼= 3.0142. In this case, the above condition yields
wC ¿ 0.166 µm, which can be verified experimentally.

4. Conclusions

In summary, the transmission amplitude for the asym-
metric AB ring with the Rashba SOI was derived analyti-
cally in the adiabatic limit, using the transfer matrix for-
malism. The conductance such as given by the Landauer
formalism, depends on the electron energy, the asym-
metry and coupling parameters and on the total phase.
The transition from weak to strong coupling leads to a
progressive broadening of the width of the Fano-type an-
tiresonances.

For the asymmetric ring in the presence of the AB mag-
netic flux, the behaviour of the transmission amplitude
zeros depends on the values of the AB phase. The case
when ΦAB = 2mπ (Φ/Φ0 is an integer) is similar to the
free system while in the case ΦAB = (2m + 1)π (Φ/Φ0 is
a half-integer) the conductance zeros are only shifted on
the η axis.

In the case when the AB flux is not an integer or
half integer multiple of the flux quantum, some conduc-
tance zeros are removed, due to the breaking of the time-
-reversal symmetry by the magnetic field, whereas some

other conductance zeros persist. Moreover, we found that
the Fano-type resonances are changed into ordinary os-
cillations.

For the asymmetric ring in the presence of both AB
flux and Rashba SOI, a zero-pole compensation can be
done in one spin channel to obtain a finite conductance,
by an adequate adjusting of the AB and AC phases, in
which case the conductance in the other channel is zero.
This opens the way to use the AB asymmetric ring like a
spin-filter device in which the electron transmission is
sensitive to the modification of the lead-ring coupling
strength as well as to the asymmetry parameter.
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