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Two-Dimensional Analytical Threshold Voltage Modelling
of Pseudomorphic Si0.8Ge0.2 p-Channel MOSFETs
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In this work we present an analytical model of the threshold voltage of SiGe p-channel metal oxide semicon-
ductor field effect transistor based on the solution of the two-dimensional Poisson’s equation and the ground state
wave function of Fang and Howard, and taking into account the space charge in the channel and its effect on the
surface potential. It is seen that the experimental data are well fitted within the experimental error that shows
the appropriateness of the implemented model. Also comparing the calculated results to that of the calculated
from the available recent reported models indicates a reasonable improvement to them.

PACS: 73.23.−b

1. Introduction

Hot-carrier effects (HCEs) should inevitably be taken
into account as the dimension of metal oxide semicon-
ductor field effect transistors (MOSFETs) are shrank into
nanoscale regime. Regarding HCEs, MOSFETs and het-
erostructure devices have considerably been studied and
modelled [1–6]. It is well known that threshold voltage is
MOSFET’s important characteristic and there have been
many efforts to analytically model the threshold voltage
for MOSFETs, particularly for short channel transistors
[7–14]. An accurate model is required to predict the
threshold voltage. However this is not an easy task to
deal with if the channel length of the device is reduced
because the depletion width of the source and drain be-
comes comparable with the channel length.

A short channel threshold voltage based on the analyti-
cal solution of the two-dimensional Poisson (2D) equation
has been derived [15]. This reference assumed a rather
constant charge distribution on the right hand side of
Poisson’s equation. This appears not to be an actual
assumption due to the complexity of the charge distri-
bution at the channel. However a realistic treatment of
the energy band structure must take into account the
space charge in the channel and its effect on the surface
potential.

In this article we propose an accurate analytical model
for the threshold voltage via solving the two-dimensional
(2D) Poisson equation by taking into account the ground
state wave function of Fang and Howard and the space
charge in the channel and its effect on the surface poten-
tial.

2. Fabrication procedure

The SiGe devices were fabricated from solid-source
molecular beam epitaxy (MBE) material grown in a VG
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Semicon V905 MBE system. Each sample consists of
300 nm undoped Si buffer on a (100) oriented (2–10 Ω cm)
n-type Si substrate followed by a 20 nm SiGe layer and
7 nm Si cap.

To avoid relaxation of the strained SiGe layer, the
processing was performed at a temperature of 750 ◦C or
below. Two types of gate oxide are used in the study:
(1) a plasma grown oxide at low temperature (< 300 ◦C).
(2) A low pressure chemical vapour deposition (LPCVD)
oxide deposited at 400 ◦C. Details of the oxide character-
istics and growth process are given by Kennedy et al. [16]
and Goh et al. [17]. To make the poly-Si gate and chan-
nel electrically conducting at all temperatures, a single
20 keV BF2 implant was used at a dose of 1×1016 cm−2.
A detailed study of this structure is given elsewhere [18].

3. Theoretical model

In this work the ground state wave function of Fang
and Howard [19] is used as they suggested in their work
of electron inversion layer in Si MOSFET’s
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where z is the width of the quantum well, b is a varia-
tional parameter, Ndep is the sheet density of depleted
background n-type impurities, m∗ is the effective mass,
e is the electronic charge, ~ is the Planck constant, εSi

is the dielectric of silicon film and Ns is the carrier sheet
density.

First Poisson’s equation is analytically solved in two
dimensions using a constant charge distribution of carri-
ers,

∂2ψ

∂x2
+

∂2ψ

∂y2
=

eNd

εSi
, (3)

where ψ is the electrostatic potential, Nd is the substrate
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doping concentration. The boundary conditions that we
use are the same as used by [15] and are as follows:

ψ(x, 0)− toxεSi

εox

∂ψ

∂y
(y = 0) = Vg − Vfb = Vgm , (4)

ψ(0, y) = Vbi , (4a)

ψ(L, y) = Vbi + Vds , (4b)

∂ψ

∂y
(y = d) = 0 , (4c)

where tox, εox, Vg, Vfb, Vds and Vbi are oxide thickness, ox-
ide dielectric, gate voltage, flat-band voltage, drain volt-
age and built in voltage, respectively. Poisson’s equation,

Fig. 1. Cross-sectioned schematic of a p-channel MOS-
FET used in this work.

i.e. Eq. (3), in two dimensions is solved subjected to the
boundary conditions of Eq. (4), using the separation of
variable technique (see Fig. 1), then ψ(x, y) can be shown
as [15]:
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+ nπ , n = 0, 1, 2 . . . (11)

In this section, we rewrite Poisson’s equation regarding
the ground state wave function of Fang and Howard [19]
(Eq. (1)):
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Using Eq. (4), it can be shown that ψ(x, y) is as follows:
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where αn and γnd are given by Eqs. (10) and (11). At
distance x = x0 from the source, the minimum surface
potential occurs at the threshold and this is twice of the
Fermi potential, i.e., ψ(x0, 0) = 2φf .

From Eqs. (4, 4a–4c) and the threshold condition, one
has

Vth − Vfb = 2φf − toxεSi

εox

∂ψ

∂y
(x = 0, y = 0) . (15)

Using Eqs. (14, 14a–14j), it can be shown that the thresh-
old voltage, i.e. Eq. (15) would be

Vth = Vth0 − toxεSi

εox

{ ∞∑
n=0

sin γnd

sinh γnL
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×[Fn sinh γn(L− x0) + F ′n sinh γnx0] + K1

}
, (16)

where Vth0 = Vfb + 2φf + eNdtox
εox

represents the long-
-channel threshold voltage. A comparison between the
threshold voltages calculated from this work with the
available reported results is given below.

The first Vth model used in this work for comparison
is given by [12, 20–22]:

Vth = Vth1 − σVds , (17)

Vth1 = Vfb + φ(0)− F
qNB

Cox
td max , (17a)

φ(0) = 2φf + ∆Ev/q , (17b)

φf = −kT

q
ln(Nch/ni) , (17c)
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(√
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, (17d)

td max = −tSiGe +
√

t2SiGe −
2εSi

qNB
φ(0) , (17e)

σ =
ε0εSiGe

πCoxL3
, (17f)

εSiGe(y) = 11.9 + 4.1y , (17g)

where φf , Vfb, F , xj , σ, εSiGe are the Fermi poten-
tial in the SiGe-channel, flat-band voltage, charge shar-
ing factor, junction depth of source/drain region, DIBL
factor [21], relative permittivity of Si1−yGey strained
layer [22], respectively, and Cox = εox/tox. All other
parameters in Eqs. (17, 17a–17g) are the same as given
in Ref. [12].

In the above model the short channel effect (SCE)
which reduces threshold voltage has been considered. Us-
ing Eqs. (17, 17a–17g) the calculated results are given in
Fig. 3b (dashed line) [12].

The second Vth model used in this work for comparison
is given as [13]:
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√
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Iα = α(φs0 − Vbs)0.25, (18e)

Iβ = β(φs0 − Vbs)0.25, (18f)

z = ln
(

Vbi − φs0 + Vds
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)
. (18g)

All other parameters in Eqs. (18, 18a–18g) are the same
as given in Ref. [13]. Using Eqs. (18, 18a–18g) the calcu-
lated results are given in Fig. 3b (dash-dotted line) [13].
The constants used in the calculations are given in Table.

TABLE
Parameters used in the calculations.

hole effective mass m∗ = 0.23m0 [23]

depleted background impurities Ndep = 5×1016 cm−2 [6, 18]

substrate doping Nd = 1×1015 cm−3 [6, 18]

built in voltage Vbi = −0.5 V

flat band voltage Vfb = −0.45 V

minimum length of channel depletion d = 2 µm

oxide layer thickness tox = 190 nm [6, 18]

dielectric of oxide layer εox = 3.9ε0

dielectric of Si film εSi = 11.9ε0

thickness of SiGe film tSiGe = 27 nm [6, 18]

junction depth of source/drain xj = 1 µm

Ge content y = 0.2

peak pile-up doping concentration Npile = 2×1017 cm−3 [13]

4. Calculated results and discussion

Using Eq. (14), the surface potential variation along
the devices against the effective channel length is plot-
ted in Fig. 2. For all devices used in this work we have
performed shift and ratio method to extract the effective
channel length [4].

Fig. 2. Variation of the surface potential along with
the channel length.

This figure shows that for the device with effective
channel length of 8 µm, the surface potential is not con-
stant over the entire channel (except between 6 µm to
8 µm which changes slowly). This result shows the inap-
propriateness of ignoring the space charge in the channel.
In case of the device with 2 µm effective channel length,
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a large variation along the channel is seen as expected
from the 2D analysis.

Using Eq. (16), the calculated threshold voltage (solid
line) is depicted in Fig. 3a along with our measured
threshold voltage (white circle) of different p-channel
lengths of Si0.8Ge0.2 MOSFETs [4, 14, 23].

Fig. 3. Threshold voltage vs. effective channel length
for (a) drain voltage, Vds of 0 and −5 V along with the
experimental results and (b) the same as (a) but the
calculated results of the two models [12, 13] have been
added.

Figure 3b is the same as Fig. 3a but, for com-
parison we have added the results of the calculations
using Eqs. (17, 17a–17g [12]) (long dashed line) and
Eqs. (18, 18a–18g [13]) (dash-dotted line).

Figure 3b shows that the measured threshold voltages
over the short channel devices ranging from 1.5 to 8.5 µm
begins to rise at a rate smaller than the calculated results
(long-dashed line) of model [12] can account for, but this
is not the case (except for the shortest channel device
of 1.5 µm) for the two other solid and dash-dotted lines
calculated in work and according to the model [13], re-
spectively.

However, our calculated results (solid line in Fig. 3b)
based on the work given in this paper seems to fit the ex-
perimental data reasonably better, over the entire range,
than that of the calculated results based on Ref. [13]
(dash-dotted line in Fig. 3b). This might be attributed
to taking account the ground state wave function in our
proposed model in this work that affects the short chan-
nel devices [24].

5. Conclusion

To conclude we have presented an analytical model for
the threshold voltage of Si0.8Ge0.2 p-MOSFETs based on
the ground state wave function of Fang and Howard and
explicit solution of 2D Poisson’s equation taking account
the space charge in the channel. It is seen that the ex-
perimental data is well fitted which indicates the suit-
ability of the implemented model, particularly for rela-
tively shorter channel devices. Moreover, a comparison
has been made between the calculated results of our im-
plemented model to that of two other models demon-
strating the relative superiority of the presented model
that incorporates the ground state wave function in the
channel.
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