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Solutions of One-Dimensional Effective Mass Schrödinger
Equation for PT -Symmetric Scarf Potential ∗
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The one-dimensional effective mass Schrödinger equation for PT -symmetric Scarf potential is investigated.
The analytical expressions of energy eigenvalue and corresponding wave function are presented. They are
accomplished by using an appropriate coordinate transformation to map the transformed exactly solvable
one-dimensional Schrödinger equation with constant mass into the position-dependent mass equation. In the
computation, three different forms of mass distributions are considered.
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1. Introduction

In quantum mechanics, exact solutions of the wave
equation are important to understand the concept
of physics. Therefore, the exact solutions for the
Schrödinger equation, the Klein–Gordon equation, the
Dirac equation have been an important subject of the-
oretical research all along [1–5]. For many years peo-
ple have developed many effective methods to solve
the constant mass equation, such as supersymmetric
(SUSYQM) [6], factor method [7], path integral repre-
sentation [8], asymptotic iteration method [9], WKB [1],
the Nikiforov–Uvarov (NU) method [10] etc.

Recently, there has been an increasing interest in the
position-dependent-mass (or effective mass) Schrödinger
equation for some physical potentials [11–15]. Its im-
portant applications are found in the fields of material
science and condensed matter physics such as semicon-
ductors [16], quantum dots [17], 3He clusters [18], quan-
tum liquids [19], semiconductor heterostructures [20],
etc. Compared to the constant mass wave equation, the
position-dependent-mass Schrödinger equation is more
complex. It is difficult to obtain its analytical so-
lution as usual. However, for some special poten-
tial, people have developed some available methods to
obtain the analytical solutions for the effective mass
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Schrödinger equation [11–14]. One of them is the co-
ordinate transformation introduced by Gönül and Al-
haidari [12–14]. The basic idea of the method [12–14] is
that one can map the transformed exactly solvable one-
-dimensional Schrödinger equation with constant mass
into the position-dependent mass equation by using an
appropriate coordinate transformation. Therefore, the
mapping result will give not only the energy spectra of
the effective mass equation, but also the corresponding
wave functions.

On the other hand, in Bender and Boettcher’s
work [21] it was shown that non-Hermitian Hamiltonian
operator, such as H = p2 + x2 (ix)ε(ε < 0), possesses
the real spectrum due to its parity-time symmetry (PT
symmetry), where P and T are the parity and time rever-
sal operators, respectively. These operators are defined
by acting on the position and momentum operators x
and p [21]:

P : x → −x , p → −p ,

T : x → x , p → −p , i → − i . (1)

The Hamiltonian will be PT -symmetric if

[PT, H] = 0 . (2)

Mostafazadeh has generalized PT symmetry to pseudo-
-Hermiticity. In fact, the Hamiltonian is considered to be
η-pseudo Hermitian if H+ = ηHη−1[22]. Non–Hermitian
but PT -symmetry models have applications in differ-
ent fields, such as optics [23], nuclear physics [24], con-
densed matter [25], the Berry phase [26] and population
biology [27]. Recently, many researchers have studied
the solutions of the relativistic and non-relativistic wave
equation with some PT -symmetric potentials (for exam-
ple: complexified Pöschl–Teller II potential model [28],
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real Rosen–Morse I potential model [29] and three-
-dimensional Eckart potential [30]). In Ref. [31], the au-
thor obtained a closed form expression of the c operator
for PT -symmetric Scarf I potential.

In this paper, we intend to study the bound state solu-
tions of one-dimensional effective mass Schrödinger equa-
tion for PT -symmetry potential by using the coordinate
transformation method. When the mass is dependent on
position coordinate, PT -symmetric Hamiltonian meets
the following conditions:

m(x) = m(−x) and V ∗(−x) = V (x) . (3)

Our aim, by considering three forms of the mass dis-
tributions, is to show the one-dimensional Schrödinger
equation used in the position-dependent mass formal-
ism. We obtained three new non-PT -symmetric and non-
-Hermitian potential functions by using the transforma-
tion. As a result, because of the exactly solvable property
of the constant mass equation, three set of the energy
eigenvalues of the bound states and corresponding wave
functions for three different effective mass distributions
are obtained.

The paper is organized as follows. In Sect. 2, we briefly
introduce the basic concept of the coordinate transfor-
mation method in Ref. [14]. In Sect. 3, as an example of
PT -symmetric Scarf potential, we consider to apply the
coordinate transformation method to obtain the energy
eigenvalues of the bound states and corresponding wave
functions for three different effective mass distributions.
Results are discussed in Sect. 4.

2. Coordinate transformation method

When the effective mass depends on the spatial posi-
tion, because of the noncommutation between mass op-
erator and momentum operator, the kinetic energy oper-
ator of the system has many definitions. In this paper,
the position-dependent-mass Hamiltonian is defined [14]
as

H = P
1

2M(x)
P + V (x)

= − ~2

2m0

(
∇ 1

m(x)
∇

)
+ V (x) , (4)

where m(x) and V (x) are real functions of the con-
figuration space coordinates. Using atomic units ~ =
2m0 = 1, the Hamiltonian results in the following time-
-independent wave equation in one dimension:

(
∂x

1
m(x)

∂x − V (x)
)

ψ(x) = −Eψ(x) , (5)

where E and ψ(x) are the energy spectrum and wave
function with the position-dependent mass system, re-
spectively.

On the other hand, the one-dimensional constant mass
wave equation is

(
d2

dy2
− V (y)

)
φ(y) = −εφ(y) , (6)

where V (y) is the potential function, and ε is the energy
spectrum. Defining a transformation y → x for a map-
ping y = f(x), we rewrite the wave functions in the form
of

φ(y) = g(x)ψ(x) . (7)

Thus, the transformed Schrödinger equation takes

ψ′′(x) +
(

2
g′(x)
g(x)

− f ′′(x)
f ′(x)

)
ψ′(x)

+
(

g′′(x)
g(x)

− g′(x)
g(x)

f ′′(x)
f ′(x)

)
ψ(x)

− f ′(x)2[V (y)− ε]ψ(x) = 0 . (8)

Comparing with Eq. (5) we obtain the following condi-
tions on the transformation:

g(x) =
(

f ′(x)
m(x)

)1/2

, (9)

V (x)− E =
f ′(x)2

m(x)
[V (y)− ε]

+
1

2m(x)
[F (m(x))− F (f ′(x))] , (10)

where F (z) = z′′
z − 3

2

(
z′
z

)2

. For a constant mass prob-
lem, the transformation is y = x. In this case, g(x) = 1.
Thus Eq. (8) will be recovered to Eq. (6).

It is straightforward to find that the coordinate trans-
formation can construct the relationship between the
constant mass and position-dependent mass equation.
Given a spatially dependent mass m(x), if we can choose
the appropriate transformation function y = f(x) to de-
termine g(x), as given by Eq. (9), and we will use Eq. (10)
to deduce the energy spectra En, and the potential func-
tion V (x) for the position-dependent-mass wave equa-
tion. This is because the potential should be independent
of the index n. As a result, according to Eq. (7), we will
obtain wave functions for the position-dependent-mass
Schrödinger equation.

3. PT -symmetric Scarf potential

The Scarf potential in one dimension is

V (y) = −U0 sech2 y

a
+ U1 sech

y

a
tanh

y

a
,

U0 > 0 , U1 6= 0 , (11)

which is a hyperbolic potential. Here, the parameters U0

and U1 describe the depth of the potential well; a is a
parameter to control the width of the potential well. For
U0 = 85, U1 = 100 and a = 1, the potential is shown
in Fig. 1.

Here our main goal is to study the solutions of one-
-dimensional Schrödinger equation for PT -symmetric
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Fig. 1. Scarf potential for U0 = 85, U1 = 100 and
a = 1.

Scarf potential. For PT -symmetric and non-Hermitian
potential case, we choose the parameters U0, and U1 are
arbitrarily real, and a is taken to be a complex parameter
(i.e., 1/a → i/a). Consequently, the potential is trans-
formed into the form

V (y) = −U0 sec2 y

a
+ iU1 sec

y

a
tan

y

a
= V ∗(y) ,

U0 > 0 , U1 6= 0 . (12)

Equations (11) and (12) are dramatically different. We
note that the transformed potential in Eq. (12) has a
trigonometric and periodic form. In Fig. 2 we plot real
and imaginary part PT -symmetric Scarf potential for
U0 = 85, U1 = 100 and a = 1, where Re(V (y)) =
−U0 sec2 y

a , Im(V (y)) = U1 sec y
a tan y

a . Figure 2 shows
that the PT -symmetric Scarf potential is periodic, and
there exists real energy spectrum due to unbroken PT -
-symmetry [21].

Fig. 2. Real and imaginary part PT -symmetric Scarf
potential for U0 = 85, U1 = 100 and a = 1, where
Re(V (y)) = −U0 sec2 y

a
, Im(V (y)) = U1 sec y

a
tan y

a
.

The constant-mass Schrödinger equation is
(
− d2

dy2
+ V (y)

)
φ(y) = εφ(y) , (13)

where the natural atomic units ~ = 2m0 = 1 are chosen.
Setting the following notation:

η =

√
(1− 4U0a2)2 + 16U2

1 a4

8
, (14)

we have solved the Schrödinger equation for the constant-
-mass potential V (y) (i.e. Eq. (12)) via the Nikiforov–
Uvarov method [10]. The energy eigenvalues are obtained
as follows:

εn =
1
a2

(
1
2

+ n2 + n− (2n + 1)

√
η − 1− 4U0a2

8

− η − 1 + 4U0a
2

8

)
, (15)

where

n = 0, 1, 2 . . . ≤ (1 +
√

2)

√
η − 1− 4U0a2

8
− 1

2
,

which means that the number of real eigenvalues is finite.
When

n =

(
2

√
η − 1− 4U0a2

8
− 1

)
/2 ,

there exists the lowest eigenvalue. The PT -symmetric
Hamiltonian has real spectra, which means that PT -
-symmetric spontaneous breakdown cannot be imple-
mented.

The corresponding unnormalized wave functions are
obtained

φn(y) =
(
1− sin

y

a

) 2α+1
4

(
1 + sin

y

a

) 2β+1
4

×P (α,β)
n

(
sin

y

a

)
, (16)

where P
(α,β)
n (x) is the Jacobi polynomials [32], and

α =

√
η +

1− 4U0a2

8
+ i

√
η − 1− 4U0a2

8
, (17)

β =

√
η +

1− 4U0a2

8
− i

√
η − 1− 4U0a2

8
. (18)

Now, we study exact analytical solutions of the
Schrödinger equation for PT -symmetric Scarf potential
when the effective mass varies with the spatial position.
We have chosen three different position-dependent-mass
distributions in order to meet PT symmetry (i.e. Eq. (3)).

3.1. Mass distribution m(x) = δx−2

Firstly, we consider the mass distribution

m(x) = δx−2, (19)

where δ is an arbitrary non-zero real constant coefficient.
After analysis, we choose the following transformation
function, which can divide the right-hand side of Eq. (10)
into two parts

f(x) = a ln x . (20)

Substituting it into Eq. (10), we obtain the following ef-
fective potential:

V (x) = −a2

δ
U0 sec2(lnx)
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+ i
a2

δ
U1 sec(ln x) tan(ln x) . (21)

which is a non-PT -symmetric, non-Hermitian potential.
Thus, the energy eigenvalue equation is obtained from
Eqs. (10) and (21) as

En =
a2

δ
εn +

1
4δ

, (22)

which means that the energy levels are always real. Fi-
nally, we obtained the unnormalized wave functions as

ψn(x) =
(ax

δ

)− 1
2
[1− sin(lnx)]

2α+1
4 [1 + sin(ln x)]

2β+1
4

×P (α,β)
n [sin(ln x)] . (23)

It can be seen that not only the energy spectra are al-
ways real when

n = 0, 1, 2 . . . ≤ (1 +
√

2)

√
η − 1− 4U0a2

8
− 1

2
,

but also the lowest energy level varies with the mass dis-
tribution in the formula (19). Equation (23) shows that
the mass distribution of the particle contributes to the
eigenfunctions.

3.2. Mass distribution m(x) = δ
1+x2

We choose the second mass distribution

m(x) =
δ

1 + x2
. (24)

When
f(x) = aarcsinhx , (25)

substituting it into above equation, we obtain the follow-
ing form:




V (x) = −a2

δ

[
U0 sec2(arcsinhx)− iU1 sec(arcsinhx)

× tan(arcsinhx)
]− 1

4δ(1+x2) ,

En = a2

δ εn + 1
4δ ,

ψn(x) =
[

a(1+x2)
1
2

δ

]− 1
2

[1− sin(arcsinhx)]
2α+1

4

×[1 + sin(arcsinhx)]
2β+1

4 P
(α,β)
n [sin(arcsinhx)].

(26)
It can be seen that the effective potential is non-PT -

-symmetric, non-Hermitian, but the eigenvalues are al-
ways real, and the eigenfunctions are dependent on the
mass distribution of the particle.

3.3. Mass distribution m(x) = δ
(1+x2)2

When
f(x) = a arctan x , (27)

then the solutions of the position-dependent-mass equa-
tion are described by the following:

V (x) = −a2

δ
U0(1 + x2)− 2x2

δ
+ i

a2

δ
U1x

√
1 + x2 ,

En =
a2

δ
εn +

1
δ

,

ψn(x) =
[a

δ
(1 + x2)

]− 1
2
(

1− x√
1 + x2

)α
2

×
(

1 +
x√

1 + x2

)β
2

P (α,β)
n

(
x√

1 + x2

)
. (28)

From Eq. (28), we also find that the eigenvalues are
always real, and the eigenfunctions are dependent on the
mass distribution of the particle.

4. Conclusion

In this paper, we have investigated the one-dimensional
Schrödinger equation for PT -symmetry Scarf potential
with the effective mass distribution dependent on spatial
position. The exactly solvable one-dimensional constant
mass Schrödinger equation has been transformed into the
form similar to the effective mass by using the appro-
priate coordinate transformation. In the computations,
three different effective mass distributions are used. Thus
three new non-PT -symmetric and non-Hermitian com-
plex potentials are produced. The results of the transfor-
mation provide us the required energy spectra and wave
functions for PT -symmetry Scarf potential. We find that
for each mass distribution, not only the energy spectra
are always real when

n = 0, 1, 2 . . . ≤ (1 +
√

2)

√
η − 1− 4U0a2

8
− 1

2
,

but also the lowest energy level varies with the mass dis-
tribution of the particle. We also find that the eigen-
functions are dependent on the mass distribution of the
particle. This work contributes to understand further the
principles of quantum mechanics.
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