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Experimental Determination of the Autocorrelation Function

of Level Velocities for Microwave Networks
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The autocorrelation function c(x) of level velocities is studied experimentally. The measurements were
performed for microwave networks simulating quantum graphs. One and two ports measurements of the scattering
matrix Ŝ necessary for determining c(x) were realized for the networks possessing 5 and 6 vertices, respectively.
The network with six vertices was fully connected. In the case of the networks with �ve vertices, additionally to
the fully connected con�guration, we measured the networks without the bond connecting input/output vertices.
The obtained experimental results besides the autocorrelation function of level velocities, also the nearest-neighbor
spacing distribution and parametric velocities distribution are compared to the predictions of random matrix
theory and numerical results.

PACS: 05.45.Mt, 03.65.Nk

1. Introduction

The parameter-dependent autocorrelation function
c(x) of level velocities, where x is the rescaled external
parameterX, was introduced about 20 years ago by [1, 2].
It was shown that the autocorrelation function c(x) is a
universal measure describing a quantum system which is
classically chaotic.
The autocorrelation function c(x) was studied theoret-

ically in the case when the external parameter X was a
magnetic �eld [3�8], connected with a shape of a billiard
[9] and in some other cases [10�13].
The real breakthrough in the experimental studies of

this problem was possible when it was shown that mi-
crowave devices such as microwave cavities [14�27] and
networks [28�35] may simulate quantum chaotic systems
such as quantum billiards and graphs, respectively.
Their introduction extended substantially the number

of systems which are used to verify wave e�ects predicted
on the basis of quantum physics [36�39].
The experimental studies of the autocorrelation func-

tion c(x) were presented e.g., in the papers [40, 41].
Recently, the connection of the parametric correlators
of level velocities and the �delity [42] resulted in re-
vival of the interest in investigation of this e�ect. In
[43, 44] numerical analysis of the parameter-dependent
spectral statistics for quantum graphs, known as excel-
lent paradigms of quantum chaos [12], is presented. In
the mentioned papers, but also in many others, e.g.,
[6, 9, 40, 41], the departure of the autocorrelation func-
tion c(x) of level velocities from the random matrix the-
ory (RMT) prediction was reported. The discrepancies
were accounted to some nonchaotic features of the inves-
tigated systems (e.g., existing of regular or quasiregular
regions) or to localization phenomena in the case of quan-
tum graphs.

2. Experiment

In this paper we present the results of the experimen-
tal study of the autocorrelation function of level veloc-
ities c(x) for microwave networks simulating quantum
graphs [28�33, 35] with preserved time reversal symme-
try (TRS). We performed one and two ports measure-

ments of the scattering matrix Ŝ for the microwave net-
works possessing 5 and 6 vertices, respectively. The net-
work with six vertices was fully connected. In the case
of the networks with �ve vertices, additionally to the
fully connected con�guration, we also measured the net-
works without the bond directly connecting input/output
(cross-talking bond) vertices. The length of networks was
chosen as an experimentally adjustable external parame-
ter X to generate level dynamics. In practice, the length
of the chosen two bonds was changed simultaneously us-
ing two phase shifters.
Microwave network [28] with preserved TRS consists

of N vertices connected by bonds, e.g., coaxial cables.
A coaxial cable is composed of an inner conductor of ra-
dius r1 surrounded by a concentric conductor of inner ra-
dius r2. The space between the conductors is �lled with
a homogeneous material having a dielectric constant ε.
Thus the optical length of the cables is equal to the physi-
cal one times

√
ε. For a frequency ν below the onset of the

next TE11 mode only the fundamental TEM mode can
propagate inside a coaxial cable. The cut-o� frequency
of the TE11 mode is νc ≈ c

π(r1+r2)
√
ε
= 32.9 GHz [45],

where r1 = 0.05 cm, r2 = 0.15 cm are the inner wire
radii of the coaxial cable (SMA-RG402) conductors, and
ε ≈ 2.08 is the te�on dielectric constant [41, 46]. The
phase shifters used to change the bonds' lengths are the
reciprocal devices (undirected) exhibiting low insertion
loss. In the experiment, ATM P1607 phase shifters with
operating frequency range DC 18.6 GHz and insertion
loss less than 1 dB were applied.
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To measure the scattering matrix Ŝ of the networks we
used typical experimental setup [32] with Agilent E8364B
microwave vector network analyzer. The �ve (six) ver-
tices networks were connected to the vector network ana-
lyzer through the leads � HP 85131-616 and HP 85131-
-617 �exible microwave cables � attached to the �ve (six)
arms vertices in the case of two ports measurements. For
one port measurements only the port no. 1 of the vector
network analyzer was connected by the lead HP 85131-
-616 to the networks. It should be noticed that networks
of the same �size� (number of vertices) used in the two
ports and one port measurements are slightly di�erent.
The two port measurements require two vertices with
the valency (number of bonds incident to a vertex) plus
one, comparable to the other ones, whereas in the case
of the one port measurements only one such a vertex is
necessary. The scattering matrix was measured in the
frequency range 0.1�9 GHz.
In order to investigate the autocorrelation function

c(x) of level velocities unfolding of the energy levels

Ei(X) = k2i (X) ( ~2

2m = 1), where ki(X) is a wave vector,
and the external parameter X is necessary to eliminate
system-dependent features of the spectra. Instead of the
original energy levels Ei(X) one obtains the unfolded en-
ergies

ξi(X) = Nav(Ei(X)), (1)

where Nav(Ei(X)) is the average number of energy lev-
els with the mean level spacing ∆ = 1 and for quantum
graphs is given by the formula [47]

Nav(Ei(X)) =

√
Ei(X)L

π
+

1

2
. (2)

The generalized conductance [2]

C(0) =

⟨(
∂ξi(X)

∂X

)2
⟩
, (3)

where ⟨. . .⟩ is the averaging over the energy levels was
used to unfold the parameter X:

x =
√
C(0)X. (4)

The autocorrelation function c(x) of level velocities
[1, 4] is de�ned as follows:

c(x) =

⟨
∂ξi
∂x̄

(x̄)
∂ξi
∂x̄

(x̄+ x)

⟩
. (5)

The averaging ⟨. . .⟩ is over the parameter x and energy
levels. It is worth pointing out that the autocorrelation
function c(x) of level velocities correlates only velocities
of the same energy level.

3. Results

The length of the six vertices network was changed
from 4.140 m to 4.275 m in 45 equal steps (1.5 mm per
bond) using the phase shifters in the two of 15 bonds.
10414 parametric velocities were determined.
In Fig. 1 the experimental results for c(x) are com-

pared with the RMT and numerical predictions. The

Fig. 1. The autocorrelation function c(x) for the six
vertices network. The experimental results (empty and
full dots for results in the frequency range 1�4 and
4�9 GHz, respectively) are compared to the RMT (solid
line) and numerical (dashed line) predictions.

empty and full circles represent the experimental results
in the frequency window 1�4 and 4�9 GHz, respectively.
The RMT and numerical predictions in the frequency
window 4�9 GHz are denoted by solid and dashed lines,
respectively.

The nearest-neighbor spacing distribution (NNSD)
compared with RMT predictions for chaotic systems with
preserved (Gaussian orthogonal ensemble � GOE) and
broken (Gaussian unitary ensemble � GUE) TRS [48] is
shown in Fig. 2.

Fig. 2. The nearest-neighbor spacing distribution
(NNSD) for the six vertices network compared with
RMT predictions for chaotic systems with preserved
(GOE) and broken (GUE) time reversal symmetry in
the frequency range 1�9 GHz. The experimental data
are represented by bars. The theoretical predictions for
GOE and GUE are represented by solid (blue online)
and dashed line (red online), respectively.

The parametric velocities distribution (PVD), which
should be Gaussian for chaotic systems [49] is shown
in Fig. 3. Parts (a) and (b) show the distributions
for the frequency range 1�4 and 4�9 GHz, respec-
tively. In order to compare them to a Gaussian P (γ) =
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Fig. 3. The PVD for six vertices network. Parts
(a) and (b) show the distributions for the frequency
range 1�4 and 4�9 GHz, respectively. The experi-
mental data are represented by bars. The Gaussian
P (γ) = (1/

√
2π) exp(−γ2/2) is denoted by solid line.

σl = 0.035, σh = 0.091.

(1/
√
2π) exp(−γ2/2) parametric velocities were rescaled

using the variance σ2 =
⟨(

∂ξi
∂x̄

)2⟩
:

νi =
∂ξi/∂x̄

σ
. (6)

For the frequency range 4�9 GHz the autocorrelation
function c(x) in Fig. 1, except small values of the un-
folded parameter x (0�0.15), follows quite well the RMT
prediction. However, for the lower frequency window
1�4 GHz the discrepancy between the theory and exper-
iment are visible till x ≈ 1. This may be connected with
the fact that the lower eigenvalues of the system are less
chaotic than the higher ones. The experimental results
of the nearest-neighbor spacing (Fig. 2) and parametric
velocities (Fig. 3) distributions are in a reasonably good
agreement with the theoretical predictions. It is worth
to notice that the variance of the PVD for the higher fre-
quency range 4�9 GHz, σh = 0.091 (part (b) of Fig. 3)
and is ≈ 2.6 times bigger than the variance for the fre-
quency range 1�4 GHz (σl = 0.035) (part (a) of Fig. 3).
The origin of the observed discrepancy between the ex-
perimental and RMT predictions for the autocorrelation
function c(x) requires further investigation.

In the case of the �ve vertices networks, the one port
and two ports measurements were performed for fully
connected networks (ten bonds). Additionally, the two
ports measurements for the network without the bond
connecting the input/output �ve-arms vertices were com-
pleted. In the case of the one port con�guration the two

Fig. 4. The autocorrelation function c(x) and PVD in
the inset for one port measurement of �ve vertices fully
connected network in the frequency range 4�9 GHz. The
experimental, numerical results, and theoretical predic-
tion for c(x) are denoted by full circles, dashed, and solid
line, respectively. In the inset bars represent the exper-
imental results and the solid line denotes the Gaussian
P (γ) = (1/

√
2π) exp(−γ2/2). σh = 0.110.

measurements were performed. In the �rst one the over-
all length 3.022 m of the network was kept constant, while
the lengths of the two of ten bonds were changed. The
length of the one bond was increasing and the length of
the other one was decreasing in 25 steps of 1.5 mm. 4787
parametric velocities ∂ξi

∂x̄ were obtained.

In Fig. 4 the autocorrelation function c(x) is presented.
Additionally, the parametric velocities distribution for
the frequency range 4�9 GHz is shown in the inset.
The evident departure from the RMT prediction is seen
for both, the experimental and numerical results. For
x > 0.45 the numerical results are closer to the theoret-
ical curve than the experimental ones. Again, the ex-
perimental results for the higher frequency range are in
better agreement with the theoretical prediction than the
results for lower frequencies which are not shown here. It
may be argued that these more evident departures of the
experimental and numerical results from the RMT pre-
diction than in the case of the six vertices network are
caused by the fact that the �ve vertices network is less
chaotic compared to the previous one [43]. The lengths
variation of only two out of ten bonds may be the other
reason of the observed discrepancies. This seems to be
con�rmed by the preliminary results (not shown here) of
the measurements of the fully connected �ve vertices net-
work, in which the lengths of three bonds were changed.

The NNSD distribution (see Fig. 5) is in a good agree-
ment with the RMT prediction for GOE. The parametric
velocities distribution (inset of Fig. 4) exhibits visible ex-
cess over the Gaussian nearby zero. The excess is much
less profound than in the lower frequency range and again
the variance of the PVD for higher frequency is ≈ 2.9
times bigger than the variance for the lower one.

The two ports measurements were performed for the
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Fig. 5. The NNSD for one port measurement of �ve
vertices fully connected network in the frequency range
0�9 GHz compared with RMT predictions for chaotic
systems with preserved (GOE) and broken (GUE) time
reversal symmetry. The experimental data are repre-
sented by bars. The theoretical predictions for GOE
and GUE are represented by the solid (blue online) and
dashed line (red online), respectively.

fully connected, 10-bond network and the network with-
out the bond connecting input/output vertices which
formed the 9-bond network. In the measurements the
total length of the networks, 3.022 m and 2.465 m, re-
spectively, were kept constant. In order to generate the
level dynamics the lengths of the chosen two bonds were
changed by means of the phase shifters. While the length
of one bond was increased the length of the other one was
simultaneously decreased. Speci�cally, for the 10-bond
network the lengths of the two bonds were changed in
45, 1.5 mm long, steps while for the 9-bond network the
bonds were changed in 23, 1.5 mm long, steps. It allowed
us to determine 6978 parametric velocities for the fully
connected, 10-bond, network and 4553 for the other one.

Fig. 6. The autocorrelation function c(x) for two ports
measurement of �ve vertices fully connected network.
The experimental results (empty and full dots for results
in the frequency range 1�4 and 4�9 GHz, respectively)
are compared to the RMT (solid line) and numerical
(dashed line) predictions.

Fig. 7. The NNSD for two ports measurement of �ve
vertices fully connected network in the frequency range
0�9 GHz compared with RMT predictions for chaotic
systems with preserved (GOE) and broken (GUE) time
reversal symmetry. The experimental data are repre-
sented by bars. The theoretical predictions for GOE
and GUE are represented by the solid (blue online) and
dashed line (red online), respectively.

Fig. 8. The PVD for two ports measurement of �ve
vertices fully connected network. Parts (a) and (b)
show the distributions for the frequency range 0�4
and 4�9 GHz, respectively. The experimental data
are represented by bars. The Gaussian P (γ) =

(1/
√
2π) exp(−γ2/2) is denoted by the solid line. σl =

0.047, σh = 0.118.

The autocorrelation function c(x) of the fully con-
nected network is shown in Fig. 6. The presented results
are clearly closer to the RMT prediction than the ones
obtained in the one port measurements of the �ve ver-
tices fully connected network. The possible explanation
of this phenomenon is the following: because of the bigger
absorption the width of the resonance curves are getting
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also bigger. Therefore, the positions of the resonances are
determined with the bigger uncertainties which slightly
in�uences the autocorrelation function c(x).

Fig. 9. The autocorrelation function c(x) and PVD
in the inset for two ports measurement of �ve ver-
tices network without the bond connecting input/out-
put �ve-arms vertices in the frequency range 4�9 GHz.
The experimental results and theoretical prediction for
c(x) are denoted by full circles and solid line, respec-
tively. In the inset bars represent the experimental re-
sults and the solid line denotes the Gaussian P (γ) =

(1/
√
2π) exp(−γ2/2). σh = 0.108.

Fig. 10. The NNSD for two ports measurement of
�ve vertices network without the bond connecting in-
put/output �ve-arms vertices in the frequency range
0�9 GHz compared with RMT predictions for chaotic
systems with preserved (GOE) and broken (GUE) time
reversal symmetry. The experimental data are repre-
sented by bars. The theoretical predictions for GOE
and GUE are represented by the solid (blue online) and
dashed line (red online), respectively.

The NNSD and PVD for this network are shown in
Figs. 7 and 8, respectively. They are also closer to RMT
predictions than the ones obtained for the one port mea-
surements. Speci�cally, the ratio of the σh/σl ≈ 2.5 and
is very close to the ratio for the six vertices network.
The results for the 9-bond network are rather surpris-

ing. One may expect that removing of the bond between

the output/input vertices should profoundly eliminate
the direct processes [50] and the results should not be
worse than for the fully connected network.
However, the autocorrelation function c(x) for the fre-

quency range 4�9 GHz presented in Fig. 9 shows bigger
departure from the RMT prediction than the other ones.
The nearest-neighbor spacing distribution (Fig. 10)

and the parametric velocities distribution (inset of Fig. 9)
are de�nitely in better agreement with the RMT predic-
tions than the autocorrelation function c(x). The ratio
of the σh/σl ≈ 3.0 is the biggest in this case.

4. Conclusions

The experimental and numerical results presented in
this paper for the microwave networks with N = 5 and
N = 6 vertices show that the autocorrelation function
c(x), in contrast to the nearest-neighbor spacing distri-
bution, departs from the RMT prediction. Bigger dis-
agreement with the RMT prediction is observed for the
graphs with smaller number of vertices. This observation
is in the agreement with the theoretical paper [43] which
additionaly predicts that for graphs with bigger number
of vertices (N ≫ 6) autocorrelation function c(x) departs
from the RMT prediction due to localization phenomena.
Further experimental investigations are necessary to clar-
ify some discrepancies with the numerical results.
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