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The vibro-acoustic response of mechanical structures can in general be well approximated in terms of linear
wave equations. Standard numerical solution methods comprise the �nite or boundary element method in the low
frequency regime and statistical energy analysis in the high-frequency limit. Major computational challenges are
posed by the so-called mid-frequency problem � that is, composite structures where the local wavelength may vary
by orders of magnitude across the components. Recently, a new approach towards determining the distribution
of mechanical and acoustic wave energy in complex built-up structures improving on standard statistical energy
analysis has been proposed. The technique interpolates between statistical energy analysis and ray tracing
containing both these methods as limiting cases. The method has its origin in studying solutions of wave equation
with an underlying chaotic ray-dynamics � often referred to as wave chaos. Within the new theory � dynamical
energy analysis � statistical energy analysis is identi�ed as a low resolution ray tracing algorithm and typical
statistical energy analysis assumptions can be quanti�ed in terms of the properties of the ray dynamics. We have
furthermore developed a hybrid statistical energy analysis/�nite element method based on random wave model
assumptions for the short-wavelength components. This makes it possible to tackle mid-frequency problems under
certain constraints on the geometry of the structure. Dynamical energy analysis and statistical energy analysis/
�nite element method calculations for a range of multi-component model systems will be presented. The results
are compared with both statistical energy analysis results and �nite element method as well as boundary element
method calculations. Dynamical energy analysis emerges as a numerically e�cient method for calculating mean
wave intensities with a high degree of spatial resolution and capturing long range correlations in the ray dynamics.

PACS: 43.40.Dx, 43.20.Dk, 43.20.Rz

1. Introduction

Distributions of mechanical or acoustic wave energy
in complex built-up systems can in the high frequency
limit often be modelled well by using thermodynamical
or statistical approaches. Here, the �ow of wave energy is
assumed to follow the gradient of the energy density [1].
Furthermore, the full system is partitioned into subsys-
tems and it is assumed that each subsystem is internally
in thermal equilibrium. Interactions between directly
coupled subsystems can then be described in terms of
coupling constants determined by the properties of the
wave dynamics at subsystem boundaries alone. These
ideas form the basis of statistical energy analysis (SEA)
[2, 3]. It can be shown that SEA is a low resolution ray
tracing method [4, 5]. Ray tracing and SEA both predict
mean values of the energy distribution and omit informa-
tion about wave e�ects such as interference or di�raction.
Both methods are therefore expected to hold in the high
frequency limit in circumstances where the local wave-
length is small everywhere when compared with typical
dimensions of the system. If that is not the case, that
is, if only some of the components are large compared to
the local wavelength whereas other parts have dimensions
comparable to the wavelength, then hybrid wave-SEA
approaches are necessary. Shorter and Langley were �rst
to establish a hybrid statistical energy analysis/�nite el-
ement (SEA/FE) method [6, 7]. The method is based
on splitting the whole structure into two di�erent kinds
of subsystems. The narrow/sti� parts are then labelled
deterministic and treated with FEM, while broad/�oppy

parts of the structure are labelled stochastic subsystems
and are treated with SEA.
In this work, we discuss dynamical energy analysis

(DEA) � a method which has recently been proposed in
[5, 8]. DEA interpolates between SEA and a full ray trac-
ing analysis and thus enhances the range of applicability
of standard SEA. Related methods have been discussed
previously in the context of wave chaos [9] and structural
dynamics [10�13]. The approach employed here di�ers
from these methods since multiple re�ections are consid-
ered in terms of linear operators directly. Representing
these operators in terms of basis function expansions then
leads to SEA-type equations. We will then brie�y intro-
duce a new SEA/FEM hybrid method based on wave
�eld correlation function described in more detail in [14].
The paper is structured as follows: in Sect. 2, we dis-

cuss the approximations necessary to reduce wave trans-
port equations to �ow equations, we introduce classi-
cal, linear �ow operators, derive the DEA equations and
present some numerical results. In Sect. 3, we brie�y
introduce the SEA/FEM hybrid method.

2. Dynamical energy analysis

� outline of the theory

2.1. From the Green function to ray-�ow equations

Throughout this paper we will focus on problems de-
scribed by the Helmholtz equation with variable wave
speed in di�erent parts of the structure; examples are
among others acoustics or vibrations of membranes. We
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will furthermore assume that the system is excited at a
source point r0 with a �xed angular frequency ω. The
system is split into N subdomains Ωi, i = 1, . . . , N , in
which the material parameters and thus the local wave
speeds cj ∝ 1/

√
mj , are constant withmj , the local mass

density. Subsystem dependent damping is incorporated
in this model through a complex-valued frequency term
ω̃j = ω + iµj with µj(ω) the local damping parameter
which may depend on ω. The set of equations to be
solved for the Green function G are thus(

∆+ k2j
)
G(r, r0, ω) = −mjδ(r − r0) (1)

for r ∈ Ωj with local wave number kj = ω̃/cj and ap-
propriate boundary conditions at the outer boundaries
and the interfaces. The wave energy density at a point
r ∈ Ωj induced by the source is then proportional to the
modulus-square of the Green function, that is,

ϵ(r, r0, ω) ∝ |G(r, r0, ω)|2. (2)

The linear wave Eq. (1) can in a natural way be as-
sociated with a ray dynamics via the eikonal approxima-
tion, see for example [5]. The mean wave energy den-
sity is given by the density of rays where rays emerge
uniformly from the source point, undergoing re�ection
on boundaries and absorption processes. This makes it
possible to relate wave energy densities to classical �ow
equations and thus thermodynamical concepts which are
at the heart of an SEA treatment. This connection has
also be highlighted in [15, 16]. In DEA, the classical
�ow is determined in terms of linear phase space oper-
ators [5]. We adopt a boundary mapping approach in
what follows, that is, we describe the �ow operators in
terms of boundary operators which leads in a natural way
to substructuring and SEA-type equations.

2.2. From ray tracing to DEA

We sketch here the derivation of the DEA �ow equa-
tions; for details see [5]. The time dependence of a den-
sity of ray trajectories can be described in terms of a
linear phase space operator Lτ (X,Y ) = δ(X − φτ (Y )),
known as a Perron�Frobenius operator in dynamical sys-
tems theory, such that

ρ(X, τ) =

∫
dY Lτ (X,Y )ρ0(Y ). (3)

Here X = (r, p) denotes the phase space coordinate with
position vector r and momentum (or velocity) vector p.
The phase space �ow φτ (Y ) gives the position of the
particle after time τ starting at Y = (r′, p′) when τ = 0.
Furthermore, ρ0 denotes the initial ray density at time
τ = 0 in phase space and the domain of integration is
over the whole of phase space.
Consider a source localised at a point r0 emitting waves

continuously at a �xed angular frequency ω. Standard
ray tracing techniques estimate the wave energy at a re-
ceiver point r by determining the density of rays starting
at r0 and reaching r after some unspeci�ed time. This
may be written in the form

ρ(r, r0, ω)

=

∫ ∞

0

dτ

∫
dp

∫
dY w(Y, τ)Lτ (X,Y )ρ0(Y, ω), (4)

with initial density ρ0(Y, ω) = δ(r′ − r0)δ(ω
2 − H(Y )),

where H is the Hamilton function corresponding to the
wave operator in (1). A multiplicative weight function w
is included to incorporate damping and re�ection/trans-
mission coe�cients.
In order to solve the stationary �ow problem (4),

a boundary mapping technique is employed. For the time
being let us consider a problem with a single (sub-)system
Ω = Ω1 with boundary Γ . The following three-step pro-
cedure will be used: �rstly, the ray density emanating
continuously from the source is mapped onto the bound-

ary Γ . The resulting boundary layer density ρ
(0)
Γ is equiv-

alent to a source density on the boundary producing the
same ray �eld in the interior as the original source �eld
after one re�ection. Secondly, densities on the bound-
ary are mapped back onto the boundary by a boundary
operator B(Xs, Y s;ω) = w(Y s)δ(Xs − ϕω(Y s)), where
Xs = (s, ps) represents the coordinates on the boundary
(s parametrises Γ and ps denotes the momentum compo-
nent tangential to Γ at s), likewise Y s = (s′, p′s), and ϕω

is the invertible boundary map. Let us note that convex-
ity is assumed to ensure ϕω is well de�ned; non-convex
regions could be handled by introducing a cut-o� func-
tion in the shadow zone [13].
The stationary density on the boundary induced by

the initial boundary distribution ρ
(0)
Γ (Xs, ω) can then be

obtained using

ρΓ (ω) =

∞∑
n=0

Bn(ω)ρ
(0)
Γ (ω) = (I − B(ω))−1ρ

(0)
Γ (ω), (5)

where Bn contains trajectories undergoing n re�ections at
the boundary. Thirdly, the resulting density distribution
on the boundary, ρΓ (X

s, ω), is mapped back into the
interior region.

2.3. Basis representation

To evaluate (1 − B)−1 it is convenient to express the
operator B in a suitable set of basis functions de�ned on
the boundary. Depending on the topology of the bound-
ary, complete function sets such as a Fourier basis for
two-dimensional domains, a Chebyshev basis for enclo-
sures with corners or spherical harmonics for bodies in
three dimensions may be chosen. Denoting the orthonor-
mal basis {. . . ,Ψ0(Xs),Ψ1(Xs),Ψ2(Xs), . . .}, we obtain

Bnm =

∫
dXsdX

′
sΨ

∗
nB(ω)Ψm

=

∫
dX ′

sΨ
∗
n(ϕω(X

′
s))w(X

′
s)Ψm(X ′

s). (6)

The treatment is reminiscent to the Fourier-mode ap-
proximation in the wave intensity analysis (WIA) [11];
let us note, however, that the basis functions cover both
momentum and position space here and can thus resolve
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spatial density inhomogeneities unlike WIA. For more
details, see again [5].
So far, we have sketched the method for a single cavity

problem. Moving to multicomponent problems as out-
lined above, we need to consider the dynamics including
rays travelling from one subsystem to another. Subsys-
tem boundaries are typically surfaces of re�ection/trans-
mission due to sudden changes in the material param-
eters. We thus describe the full dynamics in terms of
the subsystem boundary operators Bij ; for adjacent sub-
systems, power �owing from domain Ωj to Ωi is then
described through the operator

Bij(Xi
s, X

j
s ) = wij(Xj

s )δ(X
i
s − ϕij

ω (X
j
s )), (7)

where ϕij
ω is the boundary map in subsystem j mapped

onto the boundary of the adjacent subsystem i and Xi
s

are the coordinates of subsystem i. The weight wij con-
tains, among other factors, re�ection and transmission
coe�cients characterising the coupling at the interface
between Ωj and Ωi.
A basis function representation of the full operator B

as suggested in Eq. (6) is now written in terms of sub-
system boundary basis functions Ψ i

n with

Bij
nm =

∫
dXi

sdX
j
sΨ

i∗

n (Xi
s)Bij(Xi

s, X
j
s )Ψ

j
m(Xj

s ). (8)

The equilibrium distribution on the boundaries of the
subsystems is obtained by solving the systems of Eqs. (5)
for the multicomponent operator, that is,

(1−B)ρΓ = ρ0Γ . (9)

Here, B is the full operator including all subsystems and
the equation is solved for the unknown energy densities
ρΓ = {ρΓi , i = 1, . . . N}, where ρΓi denotes the coe�-
cients with respect to the basis function representation
of the density on the boundary of subsystem i.
The various representations given so far are all equiva-

lent and correspond to a description of the wave dynamics
in terms of the ray tracing ansatz (4).
An SEA-type treatment emerges when approximat-

ing the individual operators Bij by the lowest order
basis function only, in general the constant function
Ψ j

0 = (Aj
Γ )

−1/2 with Aj
Γ , the area/length of the bound-

ary of Ωj . An SEA approximation is justi�ed if the ray
dynamics within each subsystem is su�ciently chaotic
such that a trajectory entering subsystem i �forgets� ev-
erything about its past history before exiting Ωi again.
If this is not the case, one needs to include higher or-
der basis functions for each subsystem boundary opera-
tor Bij . This leads to a smooth interpolation from SEA
to a full ray-tracing treatment. The maximal number of
basis functions needed to reach convergence are expected
to be relatively small thus making the new method more
e�cient than a full ray tracing treatment � in particular
in the small damping regime.

2.4. Numerical results

In this section the versatility and e�ciency of a Cheby-
shev approximation with the Gauss�Chebyshev quadra-

ture are demonstrated by considering a complex built-
-up system. A con�guration of �ve coupled acoustic
cavities is considered as shown in Fig. 1. The solution
in the interior of each cavity is plotted and the source
point in the central cavity is clearly evident. The sub-
systems are each convex polygonal regions (the jagged
appearance of the boundary is an artefact of the way we
plot the results). The wave velocities are taken to be
c1 = c2 = c4 = c5 = 1 ms−1 and c3 = 0.5 ms−1 and
we assume µj ∝ ωcj . Figure 1 shows the DEA approxi-
mation of the distribution of log10(|G|2) throughout the
system with N = 8 with N being here the number of
basis functions taken. The plot is for a 10 Hz excita-
tion. DEA clearly gives much more detailed spatial in-
formation about the wave energy distributions than SEA,
which assumes a constant density in each subsystem. In
particular here one can see local variations close to sub-
system interfaces and a drop in the intensity as one moves
away from the source. Let us note that more energy �ows
into the far right subsystem as compared to the far left
subsystem due to there being a direct channel for the en-
ergy to travel along to the right of the source, but not to
the left.

Fig. 1. Distribution of log10(|G|2) in a �ve cavity sys-
tem. The cavities are labelled 1, 2, . . . , 5 from left to
right.

Fig. 2. A plot of ∥Gi∥2 for subsystems Ωi, i = 1, . . . , 5
at three di�erent frequencies.

Figure 2 shows approximations of ∥Gi∥2 for i =
1, . . . , 5 computed using both SEA and DEA up to
N = 8. The three �gures represent the total energy ob-
tained for each subregion at three di�erent frequencies
and thus damping levels; using the same parameters as
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before the 10, 20 and 30 Hz cases are shown from left to
right. Let us note that results are shown on a logarith-
mic scale and that the overall amplitude decreases with
increasing frequency due to increased damping. We can
deduce that SEA is working very well in subsystems 1
to 3 due to the level of agreement with the DEA calcu-
lations. Very few trajectories can move from the source
directly into subsystem 1 and multiple scattering events
lead to a local equidistribution, that is, incoming and
outgoing rays in subsystem 2 are uncorrelated. The situ-
ation is di�erent for subsystems 4 and 5 where the in�u-
ence of the direct channel from the source to subsystem
5 becomes important. Compared to the SEA result, the
DEA calculations show a noticeable increase in the val-
ues of ∥G5∥2 and a slight decrease in the values of ∥G4∥2,
that is, more energy reaches subsystem 5 than predicted
by a Markov approximation of the dynamics. The DEA
calculations again appear to converge reasonably quickly
between N = 6 and N = 8. It is also evident that SEA
works best for the lower damping values here.

3. Hybrid method based on �eld��eld

correlation functions

3.1. General setup

We will now consider structures, where some of the
subdomains have dimensions which are not small com-
pared to the local wavelength. These �small� compo-
nents lead to coupling mechanisms between the �large�
components which are very sensitive to the frequency
of the driving �eld. We will thus refer to the �small�
components as deterministic, to the other as stochastic
subdomains. In order to capture the frequency depen-
dence, we need to treat the deterministic subsystems fully
wave mechanically. They will be coupled to di�use or
random wave �elds in the stochastic components of the
structure. The randomness of the vibrational response in
these stochastic subsystems arises from re�ections from
subdomain boundaries or interfaces. The stochastic na-
ture of the reverberant �eld manifests itself in large �uc-
tuations of wave �eld amplitudes at a given position in
space when making small changes to the system (such
as, for example, changing in the driving frequency). The
random �eld excited in each stochastic subsystem propa-
gates across the interfaces into all its deterministic neigh-
bours. The energy �ux transported through the deter-
ministic domains in turn provides a coupling between the
stochastic subsystems.
Consider a structure consisting of N deterministic

and P stochastic subsystems. Transport equations can
then be set up in terms of energy balance equations here
written for a given stochastic subsystem p, that is

P∑
p′=1

(
App′ − δpp′

ηp
mp

)
⟨Ep′⟩ = Qp, (10)

where mp and µp are the material density and the damp-
ing parameters, correspondingly. The source terms Qp

give the power input through an external force acting on

the stochastic subsystem p. Finally, ⟨Ep⟩ and App′ are
the mean energies in the pth stochastic subsystems and
the coupling loss factors, respectively. In the remainder
of this section, we will present an e�cient method for cal-
culating these frequency dependent coupling terms based
on an FEM treatment of the deterministic subsystems
connecting p and p′.

3.2. Flux through interfaces and the di�use �eld
correlation function

The e�ective coupling loss factors App′ act as coupling
elements between stochastic domains. For an FEM treat-
ment, we start by considering the �ux through the nth

deterministic subsystems coming from the pth stochas-
tic subsystem and being injected into the p′th stochastic
subsystem. Details of the derivation can be found in [14].
The �ux is given by

P p′

(np) = ωℑ
{(

q in
(np)

)†
Bp′

(np)q
in
(np)

}
, (11)

where the matrix Bp′

(np) is given by

Bp′

(np) = G†
(np)ℜ{D

p′

(np′)}G(np) (12)

and Dp′

(np′) are the matrix elements of the �nite element

model connecting the degrees of freedom (DoF) on the
(np′) interface with the DoF's in the p′th subsystem, Gnp

is the Green function inside the nth deterministic sub-
system excited on the (np) interface and q in

(np) is the in-

coming component of the reverberant �eld in subsystem

p on the (np) interface. The matrix ℜ{Dp′

(np′)} is used

to evaluate the reverberant force on the (np′) interface.

Both Dp′

(np′) and G(np) can be obtained explicitly through

an FE model; we omit details of how to calculate G(np)

here, see [14]. The components q in
(np) are, however, un-

knowns. They are coupled to the stochastic �eld in the
subdomain p which we do not want to calculate explicitly
in our approach. We thus need a suitable approximation
to eliminate the q in

(np)'s from the equations.

After time and ensemble average one can write the �ux
as [14]

P p′

(np) =
ω

2
ℑ
{
Tr

(
Bp′

(np)⟨q
in
(pn)(q

in
(pn))

†⟩
)}

. (13)

The problem is now reduced to �nding the �eld��eld
correlation function ⟨q in

(pn)(q
in
(pn))

†⟩, an issue addressed

in di�use �eld theory [17]. The main result is that the
correlation function for random or di�use �elds is pro-
portional to the imaginary part of the Green function of
the corresponding wave equation. Relating the wave am-
plitudes to the mean wave energy and after normalising
the correlation function correctly, one obtains

⟨(qj(pn))
∗qk(pn)⟩ = − 2⟨Ep⟩

πωn(ω)
ℑ{G(rj , rk)}, (14)

where ⟨Ep⟩ is the mean energy stored in subsystem p
(after appropriate averaging over an ensemble of similar
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subsystems), n(ω) is the modal density in the subdomain
p (which is proportional to the area Ap) and G(rj , rk)
is the Green function connecting points rj and rk on the
interface.
In general, we do not know the Green function of sub-

system p and Eq. (14) cannot be used directly for cal-
culations. However, on short scales, we may replace the
Green function by the free-space Green function G0, that
is, for the Helmholtz equation,

G0(|r|) =
i

4
H0(k|r|)}, (15)

where k is a complex wave number (in the case of damp-
ing). In case of real k and no damping, we obtain the
classical result, that is, the correlation function is given
by J0(kr), the 0th order Bessel function [18].
Let us note that Eq. (14) is similar to the di�use �eld

reciprocity relationship derived in [19]. The derivation
presented above does not involve the concept of a direct
�eld matrix Ddir and statistical properties of the stochas-
tic subsystems are included in the model not through the
force�force, but rather through the �eld��eld correlation
function.
We can now read o� the coupling loss factors in

Eq. (10) directly from Eq. (11). Allowing for more than
one possible deterministic connection between subsystem
p and p′, one obtains

App′ =
1

πn(ω)

∑
n

ℑ
{
Tr

(
Bp

(np′)ℑ{G0}
)}

, (16)

where the summation runs over all deterministic subsys-
tems n connecting p and p′. If p = p′, we obtain re�ection
coe�cients and the summation runs over all determinis-
tic subsystems adjacent to the stochastic subsystems p.
Finally, we need to compute the source terms Qp on

the right hand side of Eq. (10). If the exterior force
is applied to the stochastic parts of the structure, then
Qp is computed as the energy input into an in�nitely
expanded medium. When the forcing is exerted on the
deterministic parts, one has to solve for the �ux out of
this deterministic subsystem and use this as a source term
for the adjacent stochastic subsystems.

3.3. Numerical validation

The approach described above has been validated
against direct FEM solutions for the system shown in the
inset of Fig. 3. The Helmholtz equation with the Neu-
mann boundary conditions has been solved to �nd the
energy response of the structure to forcing applied to one
of the deterministic domains as shown in Fig. 3. To cre-
ate stochastic resonance overlap in this structure we ran-
domised the boundaries of the larger domains (stochas-
tic subsystems) and then computed the ensemble aver-
aged energy response. The average result presented in
the main parts of Fig. 3 is found over 80 realisations.
One can see a good agreement between the hybrid and
Monte Carlo sampling approaches.

Fig. 3. Energies in the left Ep1 and right Ep2 stochas-
tic subsystems found with Monte Carlo sampling com-
pared to the results obtained with the hybrid method.
Blue � each Monte Carlo realisation; black � ensemble
average; red � hybrid method.

4. Conclusions

Summarising, we present two new and inter-linked ap-
proaches towards modelling the transport of wave ener-
gies through complex structures. We propose a high-
-frequency method which interpolates between SEA and
ray tracing based on the ray dynamics within the struc-
ture including re�ection/transmission at interfaces �
called dynamical energy analysis. For more complicated
junctions between stochastic subsystems, we calculate
coupling coe�cients based on an SEA/FEM hybrid ap-
proach. In particular, the coupling of the di�use �eld at
the boundary to the deterministic junctions makes use of
results from random �eld theory relating the �eld��eld
correlation function to the free Green function. Numeri-
cal tests demonstrated the validity of our approach.
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