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We discuss scattering from pairs of isospectral quantum graphs constructed using the method described in
the papers of Parzanchevski, Band and Ben-Shach. It was shown in the paper of Band et al. that scattering
matrices of such graphs have the same spectrum and polar structure, provided that in�nite leads are attached
in a way which preserves the symmetry of isospectral construction. In the current paper we compare this result
with the conjecture put forward by Okada et al. that the pole distribution of scattering matrices in the exterior of
isospectral domains in R2 is di�erent.

PACS:

1. Introduction

The examination of inverse spectral problems was ini-
tiated in 1966 by the famous question of Marc Kac �Can
one hear the shape of a drum?� [1]. This question con-
cerns the uniqueness of the spectrum of Laplacian on
planar domains with the Dirichlet boundary conditions.
A substantial result towards answering Kac's question
was due to Sunada who presented a theorem that de-
scribes a method for constructing isospectral Riemannian
manifolds [2]. In 1992, using an extension of Sunada's
theorem, Gordon et al. answered Kac's question as it
related to drums, presenting the �rst pair of isospectral
two-dimensional planar domains [3, 4]. At the same time,
the investigation of scattering data started. Examples of
objects that share the same scattering information were
found both for �nite area [5, 6] and in�nite area Riemann
surfaces [7, 8]. The search for isospectral and isoscatter-
ing examples now includes objects ranging from Rieman-
nian manifolds to discrete graphs. The interested reader
can �nd more about it in the reviews [9�11] and the ref-
erences within.
The inverse spectral problem for quantum graphs has

been �rst analyzed by Gutkin and Smilansky [12]. The
authors of [12] proved that a simple graph with incom-
mensurate lengths of the edges can be fully reconstructed
either from the spectrum of its Laplacian or from the
overall phase of its scattering matrix. In the recent pa-
pers [13�15] a construction method of isospectral and
isoscattering quantum graphs was presented.
The work presented in this paper was originally moti-

vated by a paper of Okada et al. [16], in which the scat-
tering from the exterior of isospectral domains in R2 is
discussed. The authors suggest that, in spite of the fact
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that the two domains are isospectral, when looked from
exterior, the corresponding scattering matrices are not
isopolar. This proposition is not proved, but is ushered
by heuristic arguments based on the �interior-exterior�
duality, and augmented by numerical simulations. The
simulations are performed on the isospectral domains
in R2 which were constructed by Gordon et al. [3, 4]
and on further examples by Buser et al. [17]. It is nat-
ural to test this conjecture for graphs, which, in spite of
being quite simple, usually display most of the complex
features which characterize the spectra of domains in R2

studied as interior or exterior problems. Following [15] we
prove that for every pair of isospectral quantum graphs
obtained from the construction presented in [13, 14] the
scattering matrices have the same polar structure, pro-
vided that leads are attached in a way which preserves
the symmetry of isospectral construction. We call such
graphs isoscattering. We compare this result with the
conjecture put forward by Okada et al. and explain that
there is no con�ict between these two results. The gen-
eral proofs of most of the statements can be found in [15].
In the current paper we present some examples and em-
phasize the role of the symmetry in this problem.

2. Quantum graphs and scattering matrices

2.1. Quantum graphs

Let Γ = (V,E) be a �nite graph which consists of
|V | vertices that are connected by |E| edges. Each edge,
e ∈ E, is a one-dimensional segment of �nite length Le

with a coordinate xe ∈ [0, Le] and this makes Γ a met-
ric graph. The metric graph becomes quantum, when we
supply it with a di�erential operator. Here we choose our
operator to be the free Schrödinger operator and denote
it by ∆. This is merely the one-dimensional Laplacian

which equals − d2

dx2
e
on each of the edges e ∈ E. The
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coupling between the edges is introduced by vertex con-
ditions at the vertices. In the following we will only use
the Neumann and Dirichlet vertex conditions (see [18, 19]
for other possibilities), which are described below. Let
v ∈ V , and Ev the set of edges incident to v. A function
f on Γ obeys the Neumann vertex conditions at v if and
only if

1. f is continuous at v, i.e.,

∀e1, e2 ∈ Ev : fe1(v) = fe2(v) .

2. The sum of derivatives of f at the vertex v equals
zero.∑

e∈Ev

df

dxe
(v) = 0 .

A function f on Γ obeys the Dirichlet vertex conditions
at v if and only if

∀e ∈ Ev : fe(v) = 0 ,

and there are no further requirements on the derivatives.

2.2. The scattering matrix of a quantum graph

In this section we explain how to de�ne the scatter-
ing matrix of a quantum graph. In order to speak about
the scattering problem for a quantum graph we need to
connect its vertices (all or a subset) by leads which ex-
tend to in�nity. For simplicity we assume that leads are
connected to vertices of valency greater or equal than two
supplied with the Neumann vertex conditions. Let us de-
note by Γ̃ the extended quantum graph which consists of
the original graph Γ and the external leads L connected
to M ≤ |V | vertices which we call the marked vertices.

We will not elaborate here on the vertex conditions for Γ̃
(see [20] for a more detailed discussion). In the following
we will use the two rules:

• the non-marked vertices are supplied with the same
vertex conditions as they had in Γ ;

• at each marked vertex v we have Neumann vertex
conditions.

We now introduce the scattering matrix which corre-
sponds to Γ̃ and denote it by SΓ̃ .
Let f be an eigenfunction of ∆ with eigenvalue k2 and

let L be the set of leads connected to Γ . The restriction
of f to the lead l ∈ L can be written in the form

fl(xl) = ainl exp(− ikxl) + aoutl exp(ikxl). (1)

Collecting all the variables {ainl }l∈L and {aoutl }l∈L into
vectors which we denote by ain and aout, we introduce
the short-hand notation

f |L = ain exp(− ikx) + aout exp(ikx). (2)

Using the requirements dictated by the vertex conditions
on all the vertices of the graph Γ̃ , we may write a set
of linear equations, some of whose variables are {ainl }l∈L

and {aoutl }l∈L. Solving these equations yields relation

aout = SΓ̃ (k)a
in. (3)

The matrix SΓ̃ (k) is a square matrix of dimension |L| and
is unitary for every k ∈ R. This is the scattering matrix
of the graph Γ̃ (also called the scattering matrix of Γ ).
The existence and uniqueness of SΓ̃ (k) for every value
of k and the unitarity of it on the real axis are proved
in [20].

3. Isospectral graphs

A new construction method of isospectral objects has
been recently presented in [13, 14]. It is a generalization
of the well-known Suanda construction [5]. This method
can be applied to any geometric object. However here we
bring the relevant aspects of the theory as it applies to
quantum graphs. In order to avoid quite abstract formal-
ism of representation theory we present the underlying
idea on the one particular example (the full discussion
of this example, as well as many others can be found
in [13]).

3.1. An example

Let us consider the graph Γ given in Fig. 1a, where
a, b, c are lengths of the edges and the vertex conditions
at all vertices are Neumann. All the symmetries of Γ
form a group which is the dihedral group G = D4 and it
is group of the symmetries of the square. Let us examine
two subgroups of G:

H1 = {e, ru, rv, σ2} , H2 = {e, rx, ry, σ2} , (4)

where rx, ry, ru, rv denote re�ections by the axes x,
y, u, v and σ is the counterclockwise rotation by π

2 . Let
us consider the following one-dimensional representations
R1 and R2 of H1 and H2, respectively,

R1 = {e→(1), σ→(−1), rv→(−1), ru→(1)} ,
R2 = {e→(1), σ→(−1), ry→(1), rx→(−1)} . (5)

Using these representations we will construct two graphs
denoted by Γ

R1
and Γ

R2
(Fig. 1b, c) which are isospectral.

Now we will explain the process of building the quotient
graph Γ

R2
. To this end let us assume that f is the eigen-

function of the Schrödinger operator on the graph Γ with
eigenvalue k2 ∈ R which transforms according to the rep-
resentation R2, i.e.

∀g ∈ H2 : gf = R2(g)f , (6)

where the action of G on f is

[gf ](x) = f(g−1x) , (7)

and R2(g) is speci�ed in (5). Since the function f trans-
forms according to the representation R2 we know that
rxf = −f . This implies that f is antisymmetric with
respect to the horizontal re�ection and in particular van-
ishes on the �xed points of rx. Similarly ryf = f which
means that f is symmetric with respect to the vertical
re�ection, hence the derivative of f vanishes at the �xed
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points of ry. Let us notice now that it is enough to know
f on the graph shown in Fig. 1c in order to deduce f on
the whole graph. The graph shown in Fig. 1c is called
the quotient graph Γ/R2. Repeating the same procedure
for R1 we obtain the graph Γ/R1 (see Fig. 1b).

Fig. 1. (a) The graph Γ that obeys the dihedral sym-
metry of the square. The lengths of some edges and the
axes of the re�ection elements in D4 are marked; (b) the
graph Γ/R1; (c) the graph Γ/R2.

It turns out that graphs Γ/R1 and Γ/R2 are isospec-
tral [13, 14]. Moreover the isospectrality of these graphs
is due to the fact that

IndGH1
R1 ≃ IndGH2

R2 , (8)

and the construction method described above.

3.2. A transplantation

Let us denote by ΦΓ (k) the eigenspace of ∆ corre-
sponding to eigenvalue k2. In this section we will explain
the concept of transplantation. The transplantation is a
map between isospectral graphs

T : ΦΓ1(k)
∼=−→ ΦΓ2(k) , (9)

which assigns to every eigenfunction on Γ1 with eigen-
value k2 an eigenfunction on Γ2 with the same eigen-
value k2. The way transplantation acts can be easily
understood. Let us notice that from Fig. 1b, c we see
that the isospectral objects consist of some elementary
�building blocks� that are attached to each other in two
di�erent prescribed ways. The transplantation can be
usually expressed in terms of these building blocks. It
expresses the restriction of an eigenfunction to a build-
ing block of the �rst object as a linear combination of the
restrictions of an eigenfunction on building blocks of the
second object. In case of the graphs in Fig. 1a, b each of
them consists of two building blocks and the transplan-
tation matrix from Γ/R1 to Γ/R2 is given by

T =

(
1 1

1 −1

)
. (10)

It is worth to mention that the existence of transplan-
tation in this case is not a surprise, i.e., the isospectral
construction method described in [13, 14] always yields
a transplantation.

4. Isoscattering graphs and drums

4.1. Isoscattering graphs

In this section we give an example of isoscattering
graphs, i.e., graphs for which scattering matrices have the
same poles structure. The full discussion of a recently
presented construction method of isoscattering graphs
can be found in [15].
In Sect. 3.1 we explained how to construct isospectral

graphs. The method was mainly due to the symmetry of
the parent graph Γ . It is easy to see that we can repeat
this procedure for a graph Γ̃ with leads (see Fig. 2).

Fig. 2. (a) The graph Γ̃ with leads attached; (b) the

graph Γ̃/R1; (c) the graph Γ̃/R2.

Moreover, there is a transplantation T between graphs
Γ̃/R1 and Γ̃/R2 and it is given by (10). We know from
Sect. 3.2 that the transplantation is a linear transforma-
tion which sends every eigenfunction from Γ̃/R1 to an

eigenfunction of Γ̃/R2. The following two observations
turn out to be of great importance:

1. It is possible to restrict the transplantation to the
leads. This is since a function restricted to a lead of
Γ̃/R1 can be only send to some linear combination

of a function restricted to leads of Γ̃/R2 and vice
versa.

2. For the graphs Γ̃/Ri the restriction of an eigen-
function to the leads is of the form

fΓ̃/Ri

∣∣∣
L
= ain

Γ̃/Ri
exp(− ikx)

+SΓ̃/Ri
(k)ain

Γ̃/Ri
exp(ikx), (11)

where SΓ̃/Ri
(k) is the corresponding scattering

matrix, ain ∈ C|L|.
The existence of a transplantation together with ob-

servation 1 gives

fΓ̃/R1

∣∣∣
L
=ain

Γ̃/R1
exp(− ikx) + SΓ̃/R1

(k)ain
Γ̃/R1

exp(ikx),

↓ T

fΓ̃/R2

∣∣∣
L
=ain

Γ̃/R2
exp(− ikx) + SΓ̃/R2

(k)ain
Γ̃/R2

exp(ikx) .

(12)
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So we obtain

ain
Γ̃/R2

= Tain
Γ̃/R1

,

SΓ̃/R2
(k)ain

Γ̃/R2
= TSΓ̃/R1

(k)ain
Γ̃/R1

. (13)

Finally we get

SΓ̃/R2
Tain

Γ̃/R1
= TSΓ̃/R1

(k)ain
Γ̃/R1

⇒ T−1SΓ̃/R2
(k)T = SΓ̃/R1

(k) . (14)

The following are now justi�ed:
Theorem 4.1. The scattering matrices of Γ̃/R1

and Γ̃/R2 are conjugated by the transplantation map for
every k ∈ C.
Corollary 4.1. The scattering matrices of Γ̃/R1

and Γ̃/R2 have the same polar structure.

This way we get that two graphs Γ̃/R1 and Γ̃/R2 are
isoscattering. It is important to notice that the construc-
tion of isoscattering graphs involve the following ingredi-
ents/steps:

• A graph Γ with certain symmetry group;

• Two isospectral quotient graphs Γ/R1 and Γ/R2;

• A graph Γ̃ which is an extension of Γ by attaching
leads to in�nity in such a way that the graph Γ̃
obeys the same symmetry group as Γ ;

• Two isoscattering quotient graphs Γ̃/R1 and Γ̃/R2.

4.2. Scattering from isospectral drums

In this section we go back to the conjecture put for-
ward by Okada et al. stating that the pole distribution
of scattering matrices in the exterior of isospectral do-
mains in R2 are di�erent. At �rst glance this conjecture
seems to be in contradiction with the result presented in
Sect. 4.1. Our main goal is to understand that there is
no con�ict here.

Fig. 3. Two isospectral drums.

Let us �rst consider the two isospectral drums pre-
sented in Fig. 3. Their isospectrality was �rst proved
by Gordon et al. [3]. In Ref. [16] the scattering prob-
lem for these two drums was investigated. In particular,

the poles structure of scattering matrices of these two
drums were computed numerically. The authors of [16]
found that these structures are di�erent and hence they
concluded that it is possible to distinguish between these
two drums while looking from the outside.

Fig. 4. The hyperbolic plane together with two
isospectral hyperbolic drums.

It was �rst noticed by Buser [17] that the isospectrality
of these two drums can be proved using Sunada's con-
struction applied to hyperbolic plane. Sunada's method
involves all the elements used in the recently presented
method [13, 14], albeit the algebraic condition (8) is re-
stricted to the trivial representations

IndGH1
id ≃ IndGH2

id . (15)

In particular the construction of quotient is analogous
to the one described in Sect. 3.1. We will now describe
this construction. To this end we treat the hyperbolic
plane (see Fig. 4) as a �graph� with symmetries � each
of the lines in Fig. 4 represents one re�ection symmetry.
Desymmetrization of the hyperbolic plane along some
particular re�ection lines yields two compact domains
denoted in green in Fig. 4. Since our choice of re�ection
subgroups ful�lls the algebraic condition (15) we get that
these two domains are isospectral. The immediate con-
sequence of this construction is that the isospectral hy-
perbolic drums are isometric, hence isoscattering. Since
their isospectrality is governed just by the construction
method, we can replace the hyperbolic triangles by the
Euclidean ones and this way obtain the two isospectral
drums shown in Fig. 3. Obviously, the symmetry of the
hyperbolic plane is no longer present for these drums. Let
us now consider the scattering from the drums shown in
Fig. 3. Going back to our graph analogy it is similar
to attaching in�nite leads to graphs Γ/R1 and Γ/R2 in
a way which does not come from the original symme-
try of Γ . Then of course the scattering matrices of the
corresponding quotient graphs have no longer the same
polar structure. In case of drums the same phenomena is
present. In order to have the same poles of the scattering
matrices we need to consider the scattering problem on
the hyperbolic plane. Summing up there is no con�ict
between our result for quantum graphs and the result of
Okada et al. for drums. Moreover the symmetry argu-
ments are responsible for both of them.
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