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Strong global correlations in the systems of coupled chaotic map lattices based on a modi�ed logistic map are
investigated. It is shown that, in the parameter range close to the edge of chaos as de�ned for an individual map,
the systems exhibit o�-diagonal long-range order and single-particle reduced density matrices de�ned in a natural
way possess one strongly dominant eigenvalue. In addition, pattern formation [13] in the above systems has been
investigated.
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1. Introduction

Coupled map lattices (CMLs) [1, 2], that is systems
of coupled maps which simulate spatially extended non-
-linear systems, have long become a useful tool to investi-
gate spatiotemporal chaos and other non-linear phenom-
ena [3�6]. Several CMLs have found interesting appli-
cations in physical modeling. One should mention here
CMLs developed to describe the Rayleigh�Benard con-
vection [7], dynamics of boiling [8, 9], formation and dy-
namics of clouds [10], crystal growth processes and hy-
drodynamics of two-dimensional �ows [11].
In our previous work [12] we have argued that CMLs

based on the ubiquitous logistic map exhibit properties
which are characteristic for the Bose�Einstein conden-
sate. We have done this by describing CMLs with the
help of a variable interpreted as a classical �eld de�ned
on discrete space-time. This has allowed us to de�ne the
single-particle reduced density matrix in a natural way.
That latter quantity enables one to give precise quantita-
tive meaning to the terms �correlations�, �coherence� and
�long-range order� which are often loosely attributed to
the spatially extended classical systems. It has turned
out that CMLs based on the logistic map exhibit, for
a broad range of parameters, o�-diagonal long-range or-
der. What is more, there exists one dominant eigenvalue
of the reduced density matrix as well as a single domi-
nant mode in the Fourier transform of the �eld describing
CML. It is to be noted that the CMLs cannot of course be
called �condensates�, �rst of all because they are merely
somewhat remote models of reality, and not physical sys-
tems. In addition, in those models there are no natural
�rst integrals like the energy or the number of particles.
Therefore, we say that CMLs exhibit �condensate-like�
behavior.
Needless to say, the subject requires further inves-

tigations. One natural path to follow is checking for
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the condensate-like behavior (or, more generally, strong
global correlations and coherence) of some other, similar
systems. It is the purpose of this work to present some
results for CMLs based on modi�ed logistic map such
that every individual map can take negative values. In
addition, we provide some results concerning pattern for-
mation in the above CMLs for we believe that the subject
is very far from being exhausted in spite of the existence
of already classic papers on the subject by Kapral and
Kaneko [5, 6, 11].

Our analysis is in the spirit of classical �eld theory, es-
pecially the Gross�Pitaevskii equation which is very ex-
tensively used in the theory of Bose�Einstein condensa-
tion [14, 15]. Applications of the classical �eld-theoretical
methods in the physics of condensates have been de-
scribed, e.g., in [16�18].

The main body of this work is organized as follows.
The mathematical model as well as the basic de�nitions
of reduced density matrix and reduced wave function are
introduced in Sect. 2. Section 3 provides a justi�cation
of our claim that the coupled map lattices based on mod-
i�ed logistic map exhibit properties which are analogous
to those of the Bose�Einstein condensates (BEC). The
description of numerical results concerning pattern for-
mation are contained in Sect. 4, while Sect. 5 comprises
a few concluding remarks.

2. The model

We consider a classical �eld ψ(x, y, t) de�ned on a two-
-dimensional spatial lattice. Its evolution in (dimension-
less, discrete) time t is given by the following equation:

ψ(x, y, t+ 1) = (1− 4d)f(ψ(x, y, t))

+ d
[
f(ψ(x+ 1, y, t)) + f(ψ(x− 1, y, t))

+ f(ψ(x, y + 1, t)) + f(ψ(x, y − 1, t))
]
, (1)

where the function f is given by
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f(ψ) = 1− aψ2, (2)

and the parameters a and d are constant. The set of val-
ues taken by ψ is the interval [−1, 1], so that negative
values of ψ are allowed unlike in the work [12].
A single map of the form ψ(t + 1) = f(ψ(t)) exhibits

the accumulation of period-doubling at a = 1.40155 . . .
and the band merging from period-2 band to a single
band state at a = 1.542 . . .
In the following the coe�cient a will be called the �non-

-linear parameter� while the coe�cient d will be called
the �di�usion constant�. It is assumed that ψ satis�es
the periodic boundary conditions on the borders of sim-
ulation box. The size of that box is N × N . All our
simulations have been performed with N = 256.
Let ψ̃ be the two-dimensional discrete Fourier trans-

form of ψ,

ψ̃(m,n) =
N−1∑
x=0

N−1∑
y=0

e2π imx/N e2π iny/Nψ(x, y) . (3)

Thus, ψ̃ may be interpreted as the momentum repre-
sentation of the �eld ψ.
Below we investigate the relation between a CML

described by Eq. (1) and a Bose�Einstein condensate.
Therefore, let us invoke the basic characteristics of the
latter which are so important that they actually form a
part of its modern de�nition. These are [15, 19, 20]:

1. The presence of one eigenvalue of the one-particle
reduced density matrix which is much larger than
all other eigenvalues.

2. The presence of o�-diagonal long-range order
(ODLRO).

The property (1) corresponds to the well-known intu-
itive de�nition of the Bose�Einstein condensate. Taking
into account that the following decomposition of the one-
-particle reduced density matrix ρ(1) has the following
decomposition eigenvalues λj and eigenvectors |ϕj⟩:

ρ(1) =
∑
j

λj |ϕj⟩⟨ϕj | ,

we can realize that if one of the eigenvalues is much larger
than the rest, then the majority or at least a substantial
fraction of particles is in the same single-particle quan-
tum state.
In addition, for an idealized system of the Bose parti-

cles with periodic boundary conditions and without ex-
ternal potential, the following signature of condensation
is also to be noticed:

3. The population of the zero-momentum mode is
much larger than population of all other modes.

The properties (1) and (2) acquire quantitative mean-
ing only if the one-particle reduced density matrix is de-
�ned. Since our model is purely classical, the de�nition

of that density matrix is not obvious. We can use, how-
ever, the classical-�eld approach to the theory of Bose�
Einstein condensation [17, 21] and de�ne the quantities:

ρ̄(x, x′) = ⟨
N−1∑
y=0

ψ(x, y)ψ(x′, y)⟩t , (4)

and

ρ(x, x′) = ρ̄(x, x′)
/∑

x

ρ̄(x, x) . (5)

We shall call the quantity ρ(x, x′) the reduced density
matrix of CML. The above de�nition in terms of an av-
eraged quadratic form made of ψ seems quite natural,
especially because ρ is a real symmetric, positive-de�nite
matrix with the trace equal to 1. The sharp brackets
⟨. . .⟩t denote the time averaging

⟨(. . .)⟩t =
1

Ts

T∑
t=T−Ts

(. . .) ,

where T is the total simulation time and Ts is the averag-
ing time. In our numerical experiments T has been equal
to 3000, and Ts has been chosen to be equal to 1000.
Let W be the largest eigenvalue of ρ. We will say

that CML is in a �condensed state� if W is signi�cantly
larger than all other eigenvalues of ρ. If this is the case,
the system possesses property (1) of the Bose�Einstein
condensates.
Further, we can provide the quantitative meaning to

the concept of ODLRO by saying that it is present in the
system if

ρ(x1 + x, x1 − x)

does not go to zero with increasing x [20] for any x1. If
this is the case, the system possesses the basic property
(2) of the Bose�Einstein condensates.
For technical convenience, namely, to avoid dealing

with too large matrices, the above de�nition of the re-
duced density matrix involves not only temporal, but
also spatial averaging over y. Let us notice that we might
equally well consider averaging over x without any qual-
itative change in the results.
All the above de�nitions are modeled after the corre-

sponding de�nitions in the non-relativistic classical �eld
theory.

3. Condensate-like features

We have performed our numerical experiment with
six values of the non-linear parameter a (1.5 + 0.1i,
i = 0, 1, . . . , 5), �ve values of the di�usion constant d
(0.05j, j = 1, 2, . . . , 5), two di�erent initial conditions,
and periodic boundary conditions. The following initial
conditions have been investigated. The �rst � type A
� initial conditions are such that ψ(x, y, t) is �excited�
only at a single point at t = 0: ψ(N/2, N/2, 0) = 0.5, and
ψ(x, y, 0) is equal to zero at all other (x, y). By type B
initial conditions we mean those with ψ(x, y, 0) being
a Gaussian function, ψ(x, y, 0) = 0.5 exp(−0.01((x −
N/2)2 + (y −N/2)2)).
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Tables I and II show the dependence of the largest
eigenvalue of the reduced density matrix on a and d.

TABLE I

Largest eigenvalue of the reduced density matrix.
Type A initial conditions.

d\a 1.5 1.6 1.7 1.8 1.9 2.0

0.05 0.932 0.324 0.368 0.371 0.385 0.387

0.10 0.933 0.402 0.375 0.382 0.389 0.389

0.15 0.935 0.444 0.396 0.428 0.405 0.401

0.20 0.935 0.390 0.423 0.436 0.411 0.405

0.25 0.929 0.533 0.519 0.454 0.465 0.695

TABLE II

Largest eigenvalue of the reduced density matrix.
Type B initial conditions.

d\a 1.5 1.6 1.7 1.8 1.9 2.0

0.05 0.932 0.333 0.365 0.368 0.384 0.386

0.10 0.933 0.439 0.405 0.384 0.392 0.389

0.15 0.934 0.465 0.658 0.394 0.403 0.400

0.20 0.935 0.376 0.680 0.451 0.409 0.406

0.25 0.933 0.404 0.360 0.420 0.400 0.397

There are several interesting observations which can
be made in connection with Tables I and II. Firstly, the
system exhibits one eigenvalue of the reduced density ma-
trix which is much larger than all other eigenvalues for

all values of a and d and both types of initial conditions.
This is especially well visible for a = 1.5, but for larger
a it is still true � the largest eigenvalue is at least three
times bigger than the remaining ones. This is one of the
most important features of the Bose-condensed matter,
as explained in Sect. 2. Our system clearly has the prop-
erty (2) of BEC. Secondly, unlike for the case investigated
in [12], there is no trace here of the quasi-condensation,
that is the presence of two or more eigenvalues close to
each other. This property is perhaps somewhat astonish-
ing because our f(ψ) appears to be only a slight modi�-
cation of f(ψ) employed in [12].

Once the reduced density matrix ρ is de�ned and its
eigenvalues calculated, it is also possible to analyze the
coherence properties of the model with the help of von
Neumann's entropy. It can be de�ned as:

S = −const×
∑
j

λj log2 λj , (6)

where λj are the eigenvalues of ρ, the summation runs
over all eigenvalues, and the constant prefactor is set to 1
for convenience. The minimal value of S is zero � this
may happen for a fully condensed system, while the max-
imal value appears for all λj equal, that is, in our case, to
log2N = 8. Table III contains the values of S for various
a and d for type A initial conditions.

The von Neumann entropy measures the distance of a
state of a quantum system from the pure state. In our
case it can be understood as a measure of the distance
from the �condensed state�.

TABLE III

The von Neumann entropy as a function of parameters a and d. Type A initial conditions.

d\a 1.5 1.52 1.543 1.544 1.545 1.55 1.6 1.8 2.0

0.05 0.786 0.857 0.910 2.833 3.517 3.858 4.806 4.916 5.167

0.10 0.733 0.772 0.829 1.684 3.044 3.278 3.898 4.709 4.896

0.15 0.694 0.738 0.800 3.079 2.964 2.809 3.525 4.072 4.528

0.20 0.677 0.719 0.779 0.782 2.217 2.882 3.456 3.885 4.352

0.25 0.637 0.692 0.864 2.447 1.457 2.612 2.860 3.110 2.129

We have had di�culties to �nd out regularities in the
a- and d-dependence of the maximal eigenvalue. In most
(but not all) cases, the value of W appears to decrease
with growing a for given d. In all cases W has had the
largest value for a equal to 1.5, that is below the value
for which period-2 bands merge to form a single band
for an individual logistic map. The picture of the depen-
dence of S on the parameters is clearer: with the notable
exception of d = 0.25 (for which the state of every cell
at the time t + 1 depends on the state of its neighbors
at the time t, but not on the previous state of that cell

itself), the entropy appears to grow monotonically with
growing c. Also, for given c, one can observe that the
larger di�usion constant, the smaller entropy. Of partic-
ular interest is the transitional region in the parameter
space near c = 1.544 which is very close to the point of
merge of period-2 bands. In that transitional region the
entropy changes quite abruptly with c.

In Fig. 1 we have displayed the spatial dependence of
the quantity (�one-particle correlation function�) σ(x) =
ρ(N/2+x,N/2−x) for x = 0, 1, 2, . . . , N/2−1, d = 0.20,
c = 1.7, and two types of initial conditions.
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Fig. 1. Spatial dependence of the one-particle correla-
tion functions for d = 0.20, a = 1.7; solid line: type A
initial conditions, dashed line: type B boundary condi-
tions.

While the values of the above �one-particle correlation
function� for x = 0 and x = N/2 must be equal due
to the boundary conditions, a strong decrease of σ(x)
for x being far from 0 or N/2 would have to take place if
there were no long-range order. However, σ(x) never falls
below the 90% of its value for x = 0. In fact, the change
of σ with x reduces itself to very small �uctuations. We
can conclude that our system exhibits the property (2)
of the Bose�Einstein condensates.
One may say that the correlation length in our CML is

virtually in�nite, which is again a characteristic feature
of the strongly condensed physical systems.
To make our case of pointing out the CML resem-

blance to the Bose condensates even stronger, we have
checked the behavior of the �eld ψ in momentum space.
In Fig. 2a,b the plots of the moduli |ψ̃| as functions of two
components of their �momentum� argument are shown
for periodic boundary conditions and two types of initial
conditions. The function |ψ̃(m,n)| is normalized in such
a way that its maximal value is 1.

Fig. 2. The dependence of |ψ̃| on the discrete vector
of momentum (m,n) for d = 0.20, c = 3.7, and peri-

odic boundary conditions. The values of |ψ̃| has been
normalized in such a way that |ψ̃(0, 0)| = 1; (a) type A
initial conditions; (b) type B initial condition.

The plots in Fig. 2 are qualitatively the same. In ad-
dition, they are representative for the entire spectrum of
values of a and d. Strong peak at the zero momentum
clearly dominates all the other maxima. The fact that
the zeroth mode is the only one which is so strongly pop-
ulated is yet another feature of Bose-condensed system
of particles � our system exhibits the property (3) of
condensates.

4. Large-scale pattern formation

We have observed the following general rules in the
process of pattern formation in our system. Firstly, the
patterns are incomparably better developed (i.e. much
better visible) for any �structured� initial conditions (like
those considered in this work) than in the case of random
initial conditions. The initial inhomogeneities (or �seeds�)
serve the building of large structures much better than
fully random conditions, which is fairly intuitive. The
patterns are best developed for smaller values of the non-
-linear parameter and intermediate values of the di�usion
constant.
To give some examples of the pattern which emerge in

two-dimensional CMLs, we show in Figs. 3 and 4 shaded-
-contour plots representing the values of the �eld ψ(x, y)
after 3000 time steps for periodic boundary conditions
and types A and B initial conditions for several values of
the parameters a and d.

Fig. 3. Grayscale shaded contour graphics represent-
ing the values of the �eld ψ after 3000 time steps for
d = 0.05, periodic boundary conditions, and three pairs
of a and d values for type A initial conditions; left:
a = 1.7, d = 0.05, center: a = 1.8, d = 0.20; right:
a = 1.9, d = 0.20. Brighter regions are those with
higher values of ψ.

Fig. 4. Grayscale shaded contour graphics represent-
ing the values of the �eld ψ after 3000 time steps for
d = 0.05, periodic boundary conditions, and three pairs
of a and d values for type B initial conditions; left:
a = 1.6, d = 0.15, center: a = 1.7, d = 0.15; right:
a = 2.0, d = 0.25. Brighter regions are those with
higher values of ψ.

Naturally, the large structures visible in Figs. 3 and 4
re�ect, to some extent, the symmetry of the simulation
box. It seems, however, that the essential patterns ob-
tained in those �gures are also present if the boundary
conditions are set on another polygone or smooth curve
(we have checked this on a triangle and an ellipse).
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5. Concluding remarks

Perhaps the most interesting of the various features of
the considered system of coupled map lattices is that it
appears to be �condensed� if the most standard measures
of the classical �eld theory of the Bose condensates are
applied. That is, for a majority of parameter values we
have observed that a gap between the largest eigenvalue
of the reduced density matrix and the rest has been de-
veloped.
Secondly, the prominent characteristic of the system is

the presence of large-scale patterns for all values of the
di�usion constant provided that the non-linear parameter
is su�ciently large, that is, approximately equal to or
larger than 1.5. Thirdly, a very strong dependence of
both the presence and qualitative features of the patterns
on the initial conditions is to be noticed.
We have, in addition, performed similar numerical

experiments with the standard (Chirikov�Taylor) map,
reaching practically the same conclusions, although the
speci�c values of the dominant eigenvalue are of course
di�erent.
The critical point in any further development is, natu-

rally, �nding a physical system which could be approxi-
mated by the coupled logistic map lattices. It seems that
one candidate to consider is a system of coupled lasers
with periodic turning on and o� of the pump. Work is in
progress to provide more substance to the above remark.
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