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Level curvature is a measure of sensitivity of energy levels of a disordered/chaotic system to perturbations.
In the bulk of the spectrum random matrix theory predicts the probability distributions of level curvatures

to be given by the Zakrzewski-Delande expressions.

Motivated by growing interest in statistics of extreme

(maximal or minimal) eigenvalues of disordered systems of various nature, it is natural to ask about the
associated level curvatures. We show how calculating the distribution for the curvatures of extreme eigenvalues
in Gaussian unitary ensemble can be reduced to studying asymptotic behaviour of orthogonal polynomials

appearing in the recent work of Nadal and Majumdar.

The corresponding asymptotic analysis being yet

outstanding, we instead will discuss solution of a related, but somewhat simpler problem of calculating the
level curvature distribution averaged over all the levels in a spectral window close to the edge of the semi-
circle. The method is based on asymptotic analysis of kernels associated with Hermite polynomials and their
Cauchy transforms, and is straightforwardly extendable to any rotationally-invariant ensemble of random matrices.

PACS: 05.40.—a

1. Introduction

Let Hy stand for N x N random Hermitian matrix
belonging to a certain invariant ensemble which is char-
acterized by the joint probability density (p.d.) of N real

eigenvalues A\;,i =1,..., N of the form
Pn(A1, A2,y AN)
1 _wsn N
e _.V(An) _ 2
— e 2 n=1 )\n >\ 5 1
- IJ0m =2 1)

in terms of the potential V(\), with Zy being the appro-
priate normalization constant. In particular, the simplest
choice V(\) = A2 corresponds to the so-called Gaussian
unitary ensemble (GUE) whose mean eigenvalue density
is given in the limit N — oo by the Wigner semicircle law
p(i) = = (30l 01— An))aue = 5=/4— 12, [\ < 2.
This law shows, in particular, that typically the minimal
Amin and the maximal A\, .x eigenvalues approach +£2,
respectively. For large but finite N one of the most im-
portant characteristics of GUE spectrum appears to be
the Tracy—Widom (TW) law for the distribution of this
extreme eigenvalues given by [1]:

/\max - 2
P(Amax) = F2 <]\72/3) 5

d oo
Fa(e) = grewo( - [ - aia:), @)
dz Ja
where ¢(z) satisfies the Painleve IT equation
q"(2) = 2¢°(2) + zq(2) ,
. _2,3/2
q(z%oo)NAl(z)NWe ERE (3)
Similar distributions are also known for other symmetry
classes of random matrices. TW distributions are highly
universal, retain their validity not only for invariant en-
sembles with a quite general potential V()), but also for
a very broad class of Hermitian random matrices with in-

dependent entries [2], and emerge in several disordered/
chaotic physical systems. For example they are relevant
for describing directed polymers in disordered media [3],
spectral gap fluctuations in disordered metal grains in
contact to a bulk superconductor [4], fluctuations of out-
put power in coupled fiber lasers [5], etc.

Consider now a general perturbation Hy +~vyW, where
~ is the control parameter, and W is a fixed given matrix.
One can pose a natural question of characterizing sensi-
tivity of the minimal/maximal eigenvalue Apin(7y) to a
generic perturbation by considering the standard pertur-
bation theory: Amin(Y) = Amin +7V +v2C + ..., where

Win) (n|W|m)
Amin - An .

N
V= (mWm), C=3 Gl
n#m

Here |n), A, for n = 1,...,N is the set of of eigen-
vectors/eigenvalues of Hy, that is H[n) = A,|n), and
|m) stands for the eigenvector corresponding to the un-
perturbed minimal eigenvalue Api,. The coefficients V
and C in (4) are frequently called in the physical liter-
ature the “level velocity” and the “level curvature”, re-
spectively. This terminology is inherited from the use
of eigenvalues of random matrices as a model of highly
excited energy levels of disordered/chaotic quantum sys-
tems, see e.g. [6]. As is well known, the components
of eigenvectors of invariant random matrices are statisti-
cally independent from the eigenvalues, and also in the
large-N limit behave essentially as independent, identi-
cally distributed Gaussian variables with variance 1/N.
This makes calculating the distribution of V' within the
random matrix theory (RMT) context a straightforward
task. At the same time finding statistics of the level
curvature C' is a much less trivial problem. Various as-
pects of the level curvatures for eigenvalues in the bulk
of the spectrum of random matrix ensembles, as well as
for disordered and chaotic systems attracted quite a con-

(4)
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siderable interest in mid-'90 s. The corresponding cur-
vature distributions were conjectured by Zakrzewski and
Delande [7] on the basis of numerical simulations, and
derived in the limit N > 1 for Gaussian ensembles in [§]
and independently by a different method in [9] (see yet
another technique in [10]). One expects the results to
be universal, that is to hold for a broad class of random
matrices sharing the same global symmetries.

To this end it seems natural to pose questions related
to sensitivity of extreme eigenvalues to perturbations.
Apart from a generic interest, from a somewhat differ-
ent angle the above expressions characterize sensitivity
of the ground state of the so-called spherical spin-glass
model [11] to perturbations in random interactions. In
addition, one can show also that in the framework of the
same spin-glass-type spherical model the so-called non-
linear susceptibility of the ground state with respect to
external magnetic field can be reduced to a similar, but
a more complicated expression. Those observations pro-
vide an additional motivation to try to develop regular
tools for statistical characterization of level curvatures
for extreme eigenvalues. Here we report some prelimi-
nary steps in this direction.

The presentation below will have the following struc-
ture. We will start with recapitulating a simpler prob-
lem of the level curvature distribution, with the curva-
tures being sampled over all levels in a small spectral
window around some point in the spectrum. Departing
from the specific methods used in earlier papers [8, 9] for
Gaussian RMT ensembles, we show that for any rotation-
ally invariant ensemble of Hermitian random matrices the
problem can be reduced to the asymptotic analysis of
the orthogonal polynomials, and their so-called Cauchy
transforms. After that we will go back to the problem of
sensitivity of extreme eigenvalues and show how the cor-
responding curvature distribution can be formulated in
terms of a special class of orthogonal polynomials stud-
ied recently in [12]. The full asymptotic analysis of the
resulting kernel is still outstanding, I will briefly show
instead how the new formulation allows us to reproduce
known GUE results in the bulk, and then concentrate on
the GUE “soft-edge” scaling regime which was not yet
studied before. Appendices A, B contain some techni-
cal details related to asymptotic analysis of the Hermite
polynomials.

2. Level curvature distribution for invariant
ensembles: general consideration

2.1. Spectrally-averaged curvature distribution in terms
of orthogonal polynomials

The p.d. of level curvatures averaged over all the eigen-
values around the point p in the spectrum is defined as

N
P = o < 3 8le = Con/Coyp)b(p - A>> ,

m=1 Hn

(5)

where (...)g stands for the ensemble average, p(p) =
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%(ny:l d(p — A\n))my stands for the mean eigenvalue
density around the point p, the curvature related to the
m-th eigenvalue being defined as

N
G, = 3 LB )

n#Em
and Ciyp stands for the typical curvature scale identified
via considering the typical contribution of two neighbour-
ing eigenvalues

1
Ciyp = Z<m|W|n><n|W|m> = mp(1)Ytyp »

1
Ytyp = N T W2 (7

with the parameter A = 1/Nmp(u) defining the mean
spacing between the neighbouring eigenvalues. The bar
stands for the average over eigenvectors, and we as-
sumed above that both |n) and |m) are independent
N-component Gaussian complex-valued vectors with
mean unit length (see below). In what follows we also
assume that generic perturbations are such that the vari-
able yyp = O(1) for N — oo. More precisely, we consider
only full-rank perturbation W such that all its N eigen-
values are of the order of unity.

Let us note for the future use that from the definitions
(5, 6) the mean curvature for levels around a point u in
the spectrum is given by

(Cody = rgzs? [ Ralo =25, ®

where the integral should be understood as the principal
value, and we introduced the standard eigenvalue two-
-point cluster function

Ra(p; A) = N(N = 1) 9)
X/ PN(AlZM,)\QZA7)\3,...,)\N)d)\3...)\N.

Let us note that the eigenvalues are strongly correlated
only over the distance comparable with typical level spac-
ing A which is negligible in comparison with the total
length of the spectral support (assumed to be for sim-
plicity a single interval). Tt is then easy to see that the
leading order result is obtained by neglecting the corre-
lations and using Ra (i1, \) =~ N2p(u)p()\) in (8). In par-
ticular, for GUE the mean curvature in the limit N — oo
is simply given by

* p(A)dA

g lul <2,

=Yt /12— 10

A= o

where we have assumed that p is fixed when N — oo,

and evaluated the principal value integral as the known

Hilbert transform of the semicircular density p(\), see

e.g. section 6.7 of [16]. We also included for further ref-

erence second line corresponding formally to the situation

when the observation window is chosen to be outside the
support.
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After this digression let us proceed to calculating the
Fourier transform C(w fP ¢, u)e”*cde of the p.d.
for normalized curvatures c= C’/Ctyp Introducing for
notational shorthand the vector |W,,) = W|m), we have
after straightforward manipulations:

1 N

m=1

I eXp( Cot;p <nV[;mz<;’Zmln>>>HN, (11)

n(zm)

We will perform the ensemble average in steps, and
start with averaging over the eigenvectors |n) with n =
,2,....m—1,m+1,...,N. In doing this we assume
that in the large-N limit different eigenvectors are effec-
tively statistically independent for different n, and more-
over the components n; = (i|n) of a given eigenvector in
any basis |[i) can be treated in the same limit simply as
independent and identically distributed (i.i.d.) complex
Gaussian-distributed numbers with variance 1/N. Actu-
ally, one can relatively easily verify that if one takes any
finite subset of [ eigenvectors such that [ is fixed when
N — o0 then the required properties follow. The lat-
ter statement is rigorously proved in the mathematical
literature, see e.g. [13]. Therefore, our method implic-
itly assumes that the number [ of terms which effectively
contribute to the curvature defined in (6) is much smaller
than N. This is very plausible in view of the denomina-
tors growing roughly linearly with n, but strictly speak-
ing remains a conjecture. Using such an assumption we
can easily perform the eigenvector average for a given |n),
which simply amounts to using the Gaussian identity

det<1 + i W"|Wm><wm‘)
1 w 1

N{n|n)—ic, (n|Wp,)(Wpn|n) d2‘n>

= , Q= ——— 12
14+ 15 (Wi |Wi) Ciyp It — Mn (12)
This immediately allows us to write
1
K(w) =
W=y p(u)
,UJ - >\'IL
5 (b — Am) — ) > (13)

n

where the brackets now stand for the averaging over the
joint p.d. (1), and we have introduced (random) variable

— Wi [Win) = <m\W2\m>
Ym Ctyp - typ (
ity W = W), with the bar standing for the remaining
average over that variable.

and exploited the Hermitic-

Let us briefly discuss how one performs the latter av-
erage by calculating the distribution of the variable y,,.
Exploiting the mentioned Gaussianity of the individual
eigenvector we immediately find for the corresponding
characteristic function
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1
exp(i ¢ <m|W2|m)>:
Ctyp det(l—lNC W2>
%exp(i ! mw? - 222 T + )
NCiyp 2N2CZ,
(14)
As for a “generic” perturbation we must have

TrW? = O(N) for all integer p > 1 one can for
large N effectively retain only the first term in the
exponential in (14). We conclude that the distri-
bution of y,, is effectively J-functional in the limit
N > 1, so one can replace ym with its average value:
Ym — T = ﬁtypTﬂ/V2 = = AN. This gives

m)(ﬂ) -

1 N—1 LA

K(w) = <5(.U_)\N) ”.> ,

) =5z .

(15)

where we have used that by permutation symmetry

of the joint p.d. (1) all the N terms in (13) produce

identical contribution upon averaging, so it is sufficient

to consider averaging of a single term with m = N. To

perform the remaining averaging over eigenvalues it is

convenient to introduce the ensemble of (N —1) x (N —1)

Hermitian matrices Hy_1 whose joint p.d. of eigenvalues
is given by (cf. (1)):

Pn_o1(A1, Aoy An—1)
1 N-1 Nt
N oN—
= e” 2 2=t VO TT (A, = M) (16)
ZN-1 o
This allows us to rewrite (1) as
ZnN_
’PN(/\l,)\g, o Aw) = 2L e NV Ow)
ZN
X H PN 1(/\1,)\2,...,)\]\/_1). (17)
Introducmg the characteristic polynomial

det (u — Hy_1) one can notice that the integration
over A1,...,Ay—1 in (15) amounts to evaluating the
following object:

[det (1 — Hy—1))’ _ormi
< det (e — Hy_1) >H lsz(ﬂ,6)7 (18)

where we have denoted ¢ = u + iwAd, A = Trp(u)N and

the constant coefficients [cy_1]? will be defined below.
In terms of the above function the Fourier transform of
the curvature distribution is simply given by

i 1 Zn-1 _ngp2
Ple,p)e”'“de = — zH
/ (1) p() Zn
o
X~ Fp o+ iwA). (19)
[en-1]

The correlation functions of product/ratios of char-
acteristic polynomials of random matrices, like that
featuring in (18), were considered in full generality
in [14, 15]. There it was found how to express these
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objects in terms of orthogonal polynomials generated
by the potential V(). Namely, introducing a measure
on the real line as du(x) = e"NV(®) dz, one can define
the unique set mg(x) of associated monic orthogonal
polynomials satisfying

[ @ @) dnte) = 5 (20)
As is well known (see e.g. [16, 17] and references therein),
the product of the coefficients [cx]? gives the normal-
ization constant in (1): Zny_1 = (N — D! Tn o lex]?
Further, define the so-called Cauchy transforms

() = 5o [ 2 duta).

X

Ime#0. (21)

In particular, in [15] an expression was derived relating
general averages like those featuring in (18) to the
determinants of 2 x 2 matrices whose entries are certain
bilinear combinations of the polynomials and their
derivatives (the so-called “kernels”). After specifying the
general formulae for our particular case the correlation
function defined in (19) takes the following explicit form:

= Fulyn€) [ W3 () — 5 — ) Wl 1)

+ (6 - ILL)FQ(N7 E)Wl(,u'v M) ) (22)
in terms of the following kernels:

Fi(p,e) = hn(e)mn-1(p) — hn-1(e)mn (), (23)

Fy(p€) = hn(e)my_1 (1) — hn—1(e)mn (1) , (24)
and

F(p,e)

Wi, p) = my () an—1(p) — 7 () (1) 5
Wa(p, p) =

T (p)mn—1 () = 7 ()7 1 (1)

d
d—Wl(lu 1) - (25)

So formally the problem amounts to finding asymp-
totic approximations for the orthogonal polynomials and
the Cauchy transforms for a given potential in the speci-
fied spectral regime. Various techniques are available for
performing such an analysis, the Riemann—Hilbert ap-
proach (see e.g. [16]) being the most powerful, especially
for proving the universality of the required asymptotics
for a broad class of rotationally-invariant ensembles. We
will not pursue this line here but rather show later on how
the above formulae reproduce the known Zakrzewski—
Delande expressions in the bulk of the spectrum |u| < 2
of the Gaussian unitary ensemble in the large-N limit,
and then study the soft-edge case. Before doing that we
however come back to addressing the original problem of
the curvature distribution for extreme eigenvalues, and
formulate it in terms of asymptotics of a special class of
orthogonal polynomials.

2.2. Curvature distribution for extreme eigenvalues:
orthogonal polynomial formulation
Consider again the perturbation of the extreme eigen-
value (Amin for definiteness) with the curvature given
by (4) and normalized to the typical curvature at the
soft edge Ciyp = N ™3y, (see Sect. 3.2 below):
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ol 1 L (W n)(n|W|m
C)_<Zé oo Loy |/\L@>—</\|n‘ )

m=1 Ctyp n#m

N
X H X()\n>)\m)> (26)
Hy

n#m

_ 1 O (W) (n|W]1)
Pm(C)N<5(c C,WMZQ A — Ap )

N
<[] X()\n>>\1)> ; (27)

n=2 Hy
where averaging goes over the joint p.d. (1), and we
have introduced the indicator function: ) = 1 if A
is true and zero otherwise, and exploited the permu-
tation symmetry of (1). Introducing the correspond-
ing Fourier transform (known as the characteristic func-
tion) K, (w) = (e'*¢) and averaging it over the Gaussian
eigenvectors |n), with n =2,3,..., N, and then over the
remaining eigenvector |1) corresponding to Amin vields,
in full analogy to (15)

<H I An>M>> -
Hy

N2/3 p=2
(28)
At the next step we introduce an ensemble of (N — 1) x
(N —1) random Hermitian matrix My _; with the eigen-

values Ag,..., Ay and the (normalized) measure
N N
P M [ anz V(An)
i (Myy—1) = ZN—1(/\1)
X H X(An>A1) H n ) (29)
n<p

where Z N—1()\1) is the appropriate normalization con-
stant. This distribution (and its normalisation) depends
on A1 (= Amin) as an external parameter. In terms of
such an ensemble we easily see (cf. (18)):

1 o0
K (UJ) - E / dAmin e_%vo\mi")ZN—l ()\min)

N-1
()\min - )\n)S >
X H ) (30)
<n,=1 )\min )\ +i N2/3 Mn_1

where the averaging (..

JMx_, goes over the p.d. (29).

We conclude that the analysis of the above expression
amounts to studying the orthogonal polynomials gener-
ated by the measure Py, (My_1). Indeed, we can in-
troduce the measure duy, () = e_%v(‘”)x(m>>\mm)dx,
with 7 (2; Amin) standing for monic orthogonal polyno-
mials with respect to this measure satisfying

/7716 (ZE )\m111)7T] (.CE Amm)d,U/)\mm( ) [Ck()\min)]26jk .
31)
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The above polynomials depend on Ay, as external pa-
rameter, and in this way the analysis of the level cur-
vature distribution for the minimal eigenvalue amounts
to extracting the large-N asymptotic behaviour of such
polynomials and their Cauchy transforms for N — ooc.
Several important steps in such an analysis for the Gaus-
sian case V (z) = 22 were reported recently by Nadal and
Majumdar in [12], but further work is needed to include
the Cauchy transforms into consideration to be able to
extract the ensuing curvature distribution in the explicit
form. The problem is non-trivial and is currently un-
der investigation [17]. Below we return to considering a
somewhat simpler case of the spectral-averaged curvature
distribution, both at the edge and in the bulk.

3. Spectral-averaged GUE curvature distribution

3.1. Bulk of the GUE spectrum
Denote 74 (z) = pr(x) = 2% 4. .. the monic orthogonal
polynomials with respect to (w.r.t.) the standard Gaus-
sian measure on the full line duy,, (z) = e~ dz, that
is

2
2| ¥

& k!
/ Pk(x)Pj(if)e_%wz dz = R0, ¢ = ~%

—0o0
(32)

Those are actually the classical Hermite polynomlals
Renaming the spectral parameter 4 — x, and y =

ﬂ(w)
so that A = & our goal is to calculate (see (19)):
; N2N-1 1 N2
Plc,z)e”'“de=1i e 27
/ ( (N — 1)!]? Np(x)
><]-'<x, ;v—}—i%y). (33)

Relevant bulk asymptotic expressions for the Hermite
polynomials, the Cauchy transforms, and the kernels in-
volved in the curvature distributions are well known,
but to make the present text self-contained we recover
them in Appendix A directly from the integral represen-
tations. Parameterizing a bulk point of the spectrum
x = 2cos¢ € (—2,2) for n,¢ of the order of unity and
N > 1 we have

2mi n ¢
_ F A >
2o 5 )

— e~ 2(CmmHimp(@)(C—n)sc (34)
where we denoted s¢ = sgnIm (().

-N

Taking into accoun we conclude that
the required large-N asymptotics for any real w and
y > 0 of the order of unity is given by

Fi(2, o+ iﬁy) ~ieNemiwivm@lely (35
whereas in the

FQ(,I, x+ 1%y) =
have
Ey (x, T+ 1%y)

iswﬂp(z)] Iy (:c, x4+ 1%,7;) (36)

view of the exact relation

a9
N%|7]=0F1 I—F%, £E+% we

Q:N[f—
2
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We also have
Wi (.CC, .T) ~ 2N67N7Tp(,7;)e%m2’
Wa(z, ) ~ NaWWy (z,x). (37)

Substituting all this to (22) with p = z,e =2+ i{y we
find that

7296]7(3“ x+ 1Ny> ZmQWl(.r,x)
><F1(x x—i—lNy){(l ;lNny)

+ i%yN [g - iswwp(x)] }
= 2iNe Nup(x)e iwsv-mr@)lwly

X L+ ylwlmp(z)] . (38)

Now we substitute all this into (33) and use the Stir-

=/~ 2” NN —N. Finally we

ling approximation (N
arrive at

/P(c, z)e “de

= Ne W m @ 4 ylwjmp(z)] . (39)
This is indeed exactly the expression leading after the
Fourier transform to the Zakrzewski-Delande curvature
distribution for GUE ensemble, see [7-9]:

Plc x)—3”—3 K =mp(a)y =1
’ _W[(C—Co)2+/€2]2’ =Tp y=1,
x X
75 ey o

Note: The above calculation can be further shortened
if we first notice two useful identities, the first one being
Nol) = 25t ([det (u— My_))  (a1)
N Mn-1
and second one Wi(u,p) = ([det (u— Mn_1)*)my_,
(see e.g. [18]). When combined together, they produce
the following relation:
1 Zna
Np(p) Zn
which after being substituted to (22) helps to rewrite the
Fourier transformed curvature distribution in the most
concise form

> —iwe T ﬁ
/ Plc,p)e dC—f<u7u+1Ny), (43)

— 00

e TEW () =1, (42)

where we have defined
= = 1 Wa (s, u)]
F(u,e) = Fi(u,e)|1 — =(e — pp) =——=
(s €) = Fi(p,€) { 5le—n) AT

(e m)Er(ne), (41
and Fy o(p, €) = C?vﬂjl Fi2(p,€).

In particular, such a form turns out to be more con-
venient for extending the calculation to the spectral-
-averaged curvature distribution at the “edge of spec-
trum” regime which is to be considered in the next
section.
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3.2. Soft edge of the GUE spectrum

Consider the “soft edge” regime p =z = 2 + ﬁ,
where ¢ € (—00,00). The mean density of eigenvalues
p(x) in this regime is well known and scales as

() = 17 (0).

with  p(¢) = Ai'(¢)? — Ai(QAL"(() (45)
where Ai(¢) stands for the Airy function. The corre-
sponding mean level spacing is then A = %, where
y = #(C) Relevant soft edge asymptotics of the Her-
mite polynomials, Cauchy transforms, and the kernels
involved were considered, for example, in [19] (see also
[20, 21] and [18]). For completeness, we reproduce
them in detail in Appendix B, see in particular expres-
sions (159) for —2®:2) and also Eqs. (171), (170) for

2Wi (z,x)
I3 (a:, T+ I\I,f}jg,) and F} (a:, T+ A‘,ﬁ}’;) Remembering

€—p= iN“’T% we reduce (43, 44) after a simple algebra

to
/p(c’ e 190 de f-(Q + N§/3, D) C;;;y;)
o iweiNl/s“’ﬂ{sw¢(C,w)
A 1 g, .
Fileld| 1(G.0) - 3O mA0)] J )
where
O(C,w) = a((w)Ai'(() — (¢, w)AI(C),
!p(<7w) = a(C7w)Ai//(C) - O/(C,W)Ai/(C)
with o' (¢,w) = (%a((,w) ,etc. (47)

The exponential factor e™ 1V Hiwg simply fixes the con-

stant shift in the curvatures ¢ = C/Ciyp to be ¢g =

- 1/3
Ny = 25
N'/3j this value coincides with the mean bulk value

o = 3;,— in the edge limit z — 2). To get rid of such

a shift and of the related extra p({) dependence in typi-
cal curvature we redefine “shifted and scaled” curvatures
c=co —

= 7p(¢)(c — co) for eigenvalues around the

point x = 2 + # This will allow us to omit the fac-

tor e~ N"?0 and set § = 1 in the definition (167) for
a(Cw).
Let us note that by setting in (10) =2+ ﬁ yields

(remembering the correspondence y =

C. =
SC g

for the averaged curvature (C)/yiyp =~ 1 — Nf‘/% Though
formally (10) is not valid for the soft edge scaling, and
should be replaced by an accurate formula for the mean
resolvent, involving second solution of the Airy equation
Bi(¢), the above estimate works well for ¢ > 1. This
gives for the mean value

_ = _ (O N

where we have used Ciypco = Yryp. We will indeed find
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below that (cs.) &~ —v/C, is the most probable value of
the curvature for ¢ > 1. In what follows we will set again
csc = c for brevity.

Now we proceed to evaluating the full curvature distri-
bution in the soft edge scaling limit. From (167) we have

oo 3
spa(C,w) = / dr cos (TC + ;)sweMT
0

o) 7_3
+1i [/ dein(TC + ) eI
0 3

> TC—? iwT
+/O dre e ], (49)

Further defining

B0 =i [ g salw) (50)
and using (49) we then find

B(c, Q) = ev(c,¢) = (¢,¢) + (e, ) (51)
where

1 [ 3 d

V(C’C):;/O COS<TC+;>02_~_’TT27

760 = g1 0) (52)
and

5(c,¢) = 0(—c)e— S+, (53)

This yields the contribution to the level curvature distri-
bution corresponding to the first term in (46)

PU(c,) = [Ai(¢)B(e.¢) = AT (Q)B(e Q). (54)
where 8/(C.¢) = 26(c,0).
Let us note that relations (151, 152) imply

[ " deB(e.¢) = 7BI(O)

and  AI(QBI'(C) — AY'(Q)BI(C) = -, (55)

which when used together with (54) ensure that the above
piece contains the full normalization: ffooo dc’P(I)(c7 () =
1. Now we further notice

0 * dw .
2 Be.) = / L iweyla(¢,w), (56)

oo 2
which implies from (47)

©dw e
| elaw)

oo 2m
= AV(OB(e.0) ~ (¢ Q)]
= _%p(l)(q ¢). (57)
Similarly,
[ ey
- aﬁ [B(¢, 0)AI"(¢) — AT (OB (e, Q)] (58)

Taken together this gives second contribution to the cur-
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vature distribution

P (c,) = - 7 | 3(G IAT(Q) = AT (e, Q)

PO 5 5 pl0)| (59)

The derivative form ensures [ dePM (¢, ¢) = 0, as ex-
pected. Let us note also that using Ai”(¢) = CAi(() it is
easy to check p'(¢) = —[Ai(¢)]%.

Let us note that from the definitions (52, 53) we have

6I(Ca C) = —05(0, C)v ’y//(cv C) = 027(6, C) - Al(C)a (60)
which yields
B'(c, () = —cB(e, ¢) + Ai(() - (61)

Substituting this to (54) we get
PU(e,¢) = —B(e, Q) [cAi(¢) + AT'(Q)] + AP(Q), (62)

which implies

Dp0(e,0) =~ 4B O[eAiQ) + AV} (69)

dc
Similarly, we have

B(C, )AL (¢) — AT'(0)B' (e, Q)
= B(e, Q) [eAT'(Q) + AI"(Q)] — Ai(QAT(C),  (64)

resulting in

0
Pe,€) = =5, [8(c. v, Q) (65)
where we have denoted

v(e,¢) = cAi'(¢) + AI"(Q)

. -/ 1p'(¢)
[cAl(C) + Ai (C)] 300
The above formulae provide exact curvature distribu-

tion in the soft-edge limit. As they are quite complicated,
it makes sense to work out several limiting cases of gen-
eral interest explicitly.

(66)

3.3. Investigating large curvature asymptotics: ¢ — 400
In this limit 5(c,7) = 0. We can expand o1 =
(1 - = + =y ) Substituting to (52) we get

2 Z 2k 2k)

1 1.
= ?Ai(g) + Cin (©)

+ C—GAl””(g) +... (67)
which implies
. 1.
V(e ¢) = 5 AT (¢) + C—4A1’”(§) +.. (68)
so that

By(c, Q) = ev(e, Q) — Al("

1 oo
L

- (69)
Now a simple calculation gives

PW (e, () = —cBy(c, QAI(() —
= (—1)F
k

C

B4(c, QAL (¢) + Ai*(Q)

AT(QAIR V() - AQAIP Q)] (70)

k=1
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or explicitly, up to the terms of the order O(c™%), using

AT(0) = CAI(O):
PO (e,Q) ~ 5 [AV(0)? ~ CAR(O)] + 5AR()
* c%{C [A1'(¢)* — AL(QAI"(Q)] — AT (Q)AI(¢)}.(71)

Now, rewriting (66) as

B

we get after straightforward manipulations

B (e, Ow(er¢) = (Ai’(o - Ai’<<>“"(o)Ai<<>

2 p(Q)
oo k :
o)

and therefore

PIV(e,¢) = ~ S8 (e, (e, )
o (_1ye(
-y G
a0 (a0 - ar329)
ait=2(0)(a1'0) - a1 (3 290 )
~ (A0 ~ CAP(Q)] - HAR(Q)
+ 2 (32028 —20p(0) - 30110 ) +

(74)
Adding up the two contributions we obtain the general
expression

c(zz

(75)
k=2
where
Pr = (2 — k)AT(QAI* D (¢) — Ai(OAIM(¢)
DA (OARD () - (k- L)
+ (k— 1)Ai"(¢)A ©) — (k 1)2/)(0
x[AT(QAI*2 () - A(Q ARV (0] (76)

One finds that P; = P = P3 = 0, so that the first non-
-vanishing term in the sum is P4, and therefore

Pre0) = {2000 + AP 2 — i1 (©)

+0(c7®), c¢— +oo. (77)
The above result confirms our intuition that the large
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curvature values occur when the two levels approach
closely, hence the large-curvature tail exponent being dic-
tated by the level repulsion mechanism is therefore uni-
versal, see [22]. For 8 = 2 this mechanism indeed predicts
P(c — 00) ~ ¢4, in full agreement with (77).
3.3.1. Towards the bulk: ( — —oo limit

In this limit we approach the bulk of the spectrum and

it is natural to expect that the result will match the bulk
curvature distribution (40).

As ¢ = —|¢], with |¢|] — oo, we can rewrite (52) as
oL i(rle) dr

o) =5 [ are p
_ VL e () dr
= 27{_ . € 02 I |<.|7_2 9 (78)

where we have changed the integration variable 7 —
|C|'/27. The above integral is clearly amenable to eval-
uation by the saddle-point method. The saddle-point
condition is 72 = 1, hence 7 = +1. Explicit calculation
gives the leading-order contribution

1
WAI(C) = ’YO(Ca C) ) (79)

where we have used the asymptotic of the Airy function
in the same limit

1 2
Ai(¢) =~ NGRS cos<3|C|3/2 - Z) (80)

Anticipating that we may need next to-the-leading or-
der terms, let us consider the difference y(c, {) —vo(c, {).
Using the exact integral representation formula (151) for
Ai(¢) one can show that

V(Ca _C > 1) ~

L OCPR2 [ e (—rt s
.6 =0l Q) = 5o e [ )
O Gt VR S
Z+ 2 T w1 (]
1 el (~r+%7)
* /_oo 1 [ d[e ey

and performing integration by parts we arrive at the ex-
act relation

—2i  |¢]

’7(07 C) - ’YO(C’ C) =

o 4[]
RPN Vo Y G
X/ el|<| ( T+3)ﬁd7' (82)
—o0 (¢ +[¢]72)
We again can evaluate the limit |(| — —oo in the above
expression by the steepest descent method, and find

v(e, =¢>1) —(e, =¢>1)
2
~ ———Ai'(¢) = ,(O). 83
(02+K|)5 1(<) ,71(0 C) ( )
We conclude that for —¢ > 1 we can use the following
approximation:

1 2
ve, —¢> 1~ ﬁAl(O + WAi/(O

+ ... (84)
(We can actually check that assuming in (84) further
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¢ > |¢| and expanding reproduces the series (67).) Dif-
ferentiating, we find to the same order

V(e —(> 1)~ ﬁmAi'(C) + WAMO
+ #AIH(C) =+ ... (85)

(2 +1¢])?
Taking into account that d(c, () is exponentially small in
such a regime, we neglect it and find correspondingly

cAi(¢) — AY 1 .
ple, ~¢ 1) = G - i)
2 ! I ./
T @R AT (©) — AT + eAT(O] + - (86)

Substituting this to (62) and using p(¢) = Ai'(¢)? —
Ai"(¢)Ai(C) gives

 +[¢] (2 +1¢])?
+0 (M) (87)
Similar calculation yields
g <> 0=~ S+
x [cAT'(¢) — AI"(0)] + ﬁm(o ... (88)

and further substituting to (65) gives after straightfor-
ward but lengthy algebra

Q) eAP(Q)
E T @+ L)?

P, —¢> 1)~

L e ea?
]~ KA - AR
—aai0At (0 + 5220 ). (59)

Adding the two contributions gives the first nonvanishing
term to be

Ple, 63 1)~ | — 2%60(0)

NI A(S) N
+§A1 (()m—4A1(OA1 (()}—i— (90)
Let us note that assuming ¢ > |(] gives back exactly (77).

In the present case —( > 1 we, however, can fur-
ther use that Ai(¢) ~ ﬁld%/‘“ AV(¢) ~ —/[C]Ai(Q),

p(CQ) = 2 VIC P (Q) = =55 [¢1712 ~ w25y We then see
that the leading term is the first one, and arrive at the
final expression
2 3,3 2 3

Ple, —¢>1)~ — () 5 A — r
T2+ w2 (O] (e +K7)

k= mp(C). (91)
The formula (91) precisely matches the bulk curvature
distribution (40), as was anticipated.

3.3.2. Away from the bulk: ( — +oo limit
Again the idea is to apply the saddle-point method for
¢ — oo. We start with the asymptotic analysis for the

2



A-108

Airy function. We shall see that for our goal we need
actually also next to the leading order corrections to the
Airy function. Let us find them from the saddle-point
method. We start with the representation valid for ¢ > 0:

oo 3
Ai(Q) = Y& [T (9 g,
2 J_o
The saddle-points are 7 = %i, and the relevant one is
7 =1 as known from the asymptotic analysis of the Airy
functions (see below). Denoting the steepest descent con-
tour passing through 7 =i as I', we shift to it from the
original contour running along the real axis. It is known
that I' runs asymptotically tangent to arg(7) = /6 for
R(7) — o0, and arg(r) = 57/6 for R(r) - —oco. How-
ever, for finite N7 (in particularly, close to 7 = 1) we can
consider the contour as running actually parallel to the

¢>0. (92)

real axis and parameterise I" as 7 = i + ﬁ This
gives
1 2 +~3/2
. _ —2¢
Ai(Q) = We J(a),
2 8 do
a=(20°%%, J(a :/ em Tl — | 93
(0", @)= | T O

The corresponding leading-order asymptotic for the Airy
functions is obtained by replacing J(a) = 1:
_2C3/2

. . 1
Ai(¢) = Aip(¢) = We K (94)
and a similar calculation for Bi gives
1 2 ,3/2
. ~ . _ TC
Bi(¢) ~ Bio(¢) = Wed ;o ¢>1. (95)
These relations imply to the leading order
~ —V/CAl(()
~VCBin(C), (> 1, (96)
which indeed gives the correct Wronskian, cf. (55). How-

ever, for our present goals we will need to account for

subleading terms as well. To see this fact we can con-

sider the mean density p(¢) = Ai’(¢)? — CAi*(¢) featur-

ing in the calculation. Using (94, 96) immediately shows

that the leading order vanishes, and we indeed need

to go to the subleading order by expanding J(a > 1) =
— 57'.'(712 + O(a*). This gives for the Airy function

i)~ Ain(0) (1= 35 257 + 0,
¢>1. (97)
After differentiation, using (94):
AV(Q) % i) (1= 15 5 + 066,
¢>1. (98)
With these expressions we find using p/'(¢) = —Ai*(¢)
that

P0)~ 5= Ao O [L+ 0[],
(© b
g = ~Ve(1+ ) %9

with some yet unspecified coefficient b. Consider now the
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combination (66), conveniently re-arranged

v(e0) = c[AT(0) - Ai(0) 55
+ai(0) - A0 28 (100)
We have
AT(O) A5 2 8 = Aia(() g (0 4),
CAI(G) - AT(O3 215 ~ AinlO) 750 +4).
so that
vie, () ~ Aio(g)%g [c(b —4) —/Cb+ 4)} . (101)

Therefore, we have asymptotically to the leading order

P (¢, ¢) ~ —Aip(¢)
< fa sl B O -0 - Vo +a]} o
and to the same order
PO (e, ) = —B(c, Q) [cAi(¢) + AT(Q)] + AP*(()
~ Be, Q) Ain()(V — ¢) + AiZ(Q) - (103)

It remains to find asymptotic for 5(c, (). To this end,
we perform a similar analysis for (e, ¢ ) We write

(e, C) = \f/ 143/2 (r+%)

02—1—(72
_ ! / drei¢ () dr
= dric oo T —ic/VC

7/00 dre () 4T |
oo T+ ic/V/C
For |c¢| < v/C deforming contour from the real line to the
steepest descent contour I incurs the contribution from
the pole at 7 = i|c|/v/(, whereas for |c| > 1/C the pole is
above I'. We therefore have the exact identity

(104)

v(e, ¢>0) =y(e, ¢>0)+7r(c, ¢>0), (105)
where we denoted the pole contribution
1 TR
(e, ¢>0) = gre sl 0(V/C—lel)  (106)
and
\f 143/2 T+ ) dr
vr(e, ¢>0) / 21 (2
(107)

Performing the integral by the steepest descent method
gives (using (94))

7F(C’<>O)%C2*

(>1, el #VC. (108)
It turns out that for |¢| < v/ the term 7, gives much
larger contribution than ypr. To verify this we rescale
¢ = ¢y/C and consider ¢ to be of the order of unity. For
vp we arrive at the expression

AIO(C) )
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1
20el¢17?

Yole, ¢>0) = o= hg(1 — |2l

flu)=u-— %ug. (109)

As f'(u) =1 —u? > 0 for u € [0,1) we see that f(u) <

f(1) = 2/3, hence (¢, ¢ > 0) > G%e_gca/?. At the
same time using the asymptotics of the Airy function
_203/2 1 203/

¢« vp, proving the

1
o~ gyReae ? <<1/2e 3
statement.

Thus for |c|] < /¢ we can approximate v(c,() =~
vp(c, ), which upon differentiation gives

hle, ¢ > 0) = —ge ST o(/T — o)
and further
Yp(e; ¢ >0) = (e, ¢ >0)
~ e ¢t399()0(1/C — ¢)
and finally adding (53) we obtain
Ble, ¢>0) = By, ¢ >0)=cy(c, ¢>0)
—Mle, ¢>0)+4(c, Q)
= e Ct3g(\/C = ¢), (110)

which is the leading approximation (exponentially dom-
inant) in the whole domain ¢ € (—00, /().

It is useful to check that such a precision is sufficient
for the relation (55) to hold

> ﬂ 1.3
/ B(e, C)dc:/ e ¢T3 de ~ wBi(¢),  (111)

which is checked by performing the integral (after change
¢ — +/Cc) by the steepest descent method, and using
asymptotic (95) for Bi(().

Substituting (110) to (103) gives the leading order ex-
pression

PO (e, ¢) ~ Aig(Q)e T3¢ (VC —¢),

c € (—00,1/<). (112)
Differentiation in the domain ¢ € (—o0, /() gives
0
%61)(67 C) = (02 - C)ﬁp(cv C) 5
c € (—00,V/C), (113)

which finally shows that to the leading order
1.3 1
11 ~ : —Gct+ 3¢ _ _ _
P (e ) Aol (= ) gz [elb — 4)
—VEb+9)], ce (=00, (114)

Adding together we get the full curvature p.d. function
for ¢ > 1, and ¢ € (—o00,/<):

Pole, Q) ~ Aig(¢)e ™45 (1/C = ¢)
x{l—l— 116(1+ \C@) L;E(b—ZL) - (b+4)} }

To understand the structure of the above expression no-
tice that

(115)
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Aig(¢)e—cetie’ = L odetmec-3c?
0 - -
2ﬁ<1/4
1 —1@2vC—c)(c+V0)?
= We 3 ( ) ), (116)

so that the curvature p.d.f. has a very sharp maxi-
mum (with the height ¢'/* and widths ¢~/*) around

¢ = —/C. Introduce correspondingly the new random
variable x = (c + /C)v/2¢1/4, so that ¢ = ﬁ —/C:
Aig(Qe~¢etie® = L ~Treadnm (117)

B 2ﬁC1/4 €
Remembering that the p.d.f. of x acquires the extra Ja-
cobian factor v/2¢/4, we see that the p.d.

2 23

1 2 1
Po(z, (> 1)~ e~z efvV2¢3/d

V2r

(1~ 53am) [+ (&)

12
tends to the standard Gaussian distribution oz e~z for
fixed x and ¢ — oo.

(118)

Now it remains to consider the case ¢ > /(. Then
the only contribution comes from the term vy (¢). Using
precisely the same method as in { — —oo limit we can
arrive at the full analogue of the exact identity (82):

1 . 2i ¢

vr(c () — ﬁAl(C) = %ﬁ

.32 73
></ elC (7'+ 3 )ﬁdT
—00 (C *CT )

and performing the integral by steepest descent method
further we see

vr(e,¢) = ﬁAi(C) + ﬁAi(C) +...

Noticing that |¢] = —¢ for ¢ < 0, we see that (120) is
precisely the same as (84), hence the curvature p.d.f. will
be again given by analogue of (90):

Ple> (> 1)~ ﬁ [ —2¢p(¢) + gAiQ

- 4Ai(§)Ai’(§)} T

Using the asymptotic formulae (97), (99) we find that
the leading term in (121) cancels, and the result is of the
order of Aig (O)¢3/% ~ g, or explicitly

2B
Ple>\(>1)~ (C2—§)2p(€§)
B 1 _%43/2

N ——— e ,
(¢2 = ()? 4m(?

where the constant B of the order of unity is left unde-

termined.

(119)

(120)

P’ (€)
p(¢)

(121)

(122)

The crossover between the two regimes ¢ < /¢ and
¢ > +/C happens over the domain |c — /C| ~ 41% In-

deed, take ¢ = +/C + 24%’ where 3 is of the order of
unity. Substituting this for § > 0 into v, from (108) and

using asymptotic for Airy function at ¢ > 1 we see that
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1 _ %43/2
~ e
9 Q) 2/mci
1 _2¢3/2
~ e 35",
2,/7CB
On the other hand, the pole contribution (106) for ¢ =~
/¢ approaches the value
1 —2 32
~——=e
s
that is the two contributions are of the same order. It
would be interesting to find the exact crossover expres-

sion for arbitrary fixed 8, and we leave it for further
investigation.

(123)

(124)
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Appendix A: Bulk asymptotics of Hermite
polynomials, Cauchy transforms,

and the kernels involved
As is well known (see e.g. [18]) the Hermite polynomi-

als p(z) have the following integral representation:

N . n . nr ()

PN+n(T) = Py {(—I)NJr INtn(2) + it Inin(z)],

. (125)

where
INin(2) :/ d(](]]\”r"’e_%(q_i"c)2

0

= eNé/ dggNtre ¥ e HiNTg, (126)
0

For real |x| < 2 we can use parametrization denoting

= 2cos¢ and by the steepest descent method (sad-
dle point at ¢ = ie~ %) find [18] the following large-N
asymptotic behaviour:

+:N4+n ™

N
I . _ 5 cos2¢ 12
N+ (x) 1 Nsinqﬁe ( 7)
. 1 B H 1
« eﬂ(n+§)¢>+xzﬂN9(¢)7 0(p) = ¢ — 3 sin(2¢) ,
so that
(z) 2 0% 0520 g 1¢ W+N9(¢)
)R\ — 57 Ty :
bn sin ¢ 2 4
(128)
Differentiating over z, picking up the leading terms pro-
portional to N, and using % == 2si1n¢ d di)i(f) -
2sin?(¢) we get
d 1 2 N cos2¢
a ~ cos2¢ \y
dxpN(:E) 2sin ¢ sin¢ez

X [ — sin(20) cos(ifb - % + N9(¢)>
— 25in2(¢) sin(;d) - % + N9(¢)>}

= Npn-1(z), (129)
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which in fact is easy to show to be the ezact relation for
Hermite polynomials. Similarly

pxa (o) ~ 51121¢ oY 00526 oo <_¢ -t N9(¢>))
ap]\,_l(gv) ~ Npn_a(x). (130)

This shows that the kernel Wi (z, z) from (25) can be
written as
Wi(z,2) = N[py-1(z)pn-1(z) — pn (2)pN—2(7)]

~ 2N sin gpe¥ <529 (131)
where we have used the identity cos?(A) — cos(A + ¢)
x cos(A — ¢) = sin? ¢ for any A. This implies

Wo(z,x) = C%Wl(x,x) ~ [-2Nsin(2¢)]

) (_2siln¢)W1($v$> = 2N cos oW1 (z,z). (132)

Finally, recalling the mean eigenvalue density p(z) =
5=+/4 — 2% we recover (37).

Now, denote the Cauchy transforms of the above py (z)
as hi(z) = fr(z). As is shown in [18] for real x and e
holds the exact integral representation

Inan(z+i€) = —(— i)N'*'"séV'H”_1

E[

where we denoted s = sgn(e).
we conclude

2 . .
2q +isc(z+ie)Ng N+ndq,

q (133)

Comparing with (126)

fN+n(33 + ie) = _(_i)N+"séV+"_1

N ey
X 4/ oz (@setilel) Ingn(xse + ile]).
27

In our applications we will need ¢ = i%y (see Egs.
(18, 19) and (22)-(24) when considering the large-N
asymptotics. To this end, the formula (127) obviously
implies in the large-N limit to the leading order, with
real ¢ = O(1)

IN+n (.’L-I— Ji) NIN+n( ) —Nsin2¢5¢p—iNO'(¢)é¢

where

(134)

(135)

_d¢’ _ 1 ¢
00 = 3,00 = 2singp N’

0'(¢) = 1 — cos(26) = 2sin? ¢.
Taking into account sing = V4 —22 = 7p(z) we
rewrite the above as

INin (I + % R IN+n(J;)eC(cos¢+i sin ¢)

= Iy n(z)elEHime@l, (136)

which retains its validity when we replace real ¢ with
purely imaginary ¢ = i|w|y as is needed in our applica-
tion (remember y > 0 by definition):

INtn <$Sw + i|;\d[y> r el W eIy L (2s,,)
(137)
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Combining this with (134) gives needed leading-order
asymptotic of the Cauchy transform

w
,fN+n(17 + lﬁy> ~ _(_i)N+nSi\7+n71

N -
)y gme B ety (2s). (138)

Now we can calculate the asymptotic of the kernel
Fi(z, x+i%y) from (23). Actually, it is more conve-
nient to consider a slightly more general case

F1<x+ %7334‘ 1%3;) = fN(OC-i- i%y)pN—1(x+ %)

S ey

. — 2 N2 _juZg—
(—I)N 1S£JV 28 2 gTiwgy mp(z)|w|y

X [ —is,In(s,)PN-1 (:z: + E)

N
—In_1(zsw)pN (x + %)}

Asgsume first w > 0, then
—18u,IN(T50)PN-1 (m + Q) — In_1(xs,)pN (m + ﬂ)

(139)

N N
= —iln(z)pN_1 (Jc + %) — In_1(7)pN (11 + %)

or, using (125), (136) and the relation In(—z) = In(x)

for any real z, we have (up to the overall factor |/ 5-):

]

x e%”{ —iln(z) [(—i)N_llN,l(x)ei”p(I)” + c.c.

[A—

—In_1() [(-i)NIN(x)e”PW + c.c.} }
= —iNedHimP @ [y (2)In_1(~2)

+ In(—z)In_1(z)].
Now assume w < 0, then similar calculation gives

—iszN(arsw)pN_1<a: + ﬂ)

N
fIN_l(xsw)pN(er %)
= iIN(—x)pN_l(er %)
~ In-a(—a)pn (2 + 1)

_ (i)Ne’;niﬂp(ﬂﬂ)n\/i[]N(;p)IN_l(SC)

+ IN(—x)IN,l(x)] .

Thus we can conclude that

—isuIn(xsy,)pN—1 (x + %)

—In_1(zsw)pN (:17 + %)

— —(swi)Nw /ge%n—iﬂp(r)nsw
T
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x [IN(x)IN_l(x) + In(@) In-1(2)], (140)
which gives for the leading-order kernel asymptotics

Fl(:(;—i—ﬂ7 x+ iiy)

N N
i N - Fa? g (- iwy)—mp(@)lwly—imp(a)n
27
x [IN(x)IN_l(a:) + In(@) Iy_1(2)]. (141)
Using  (127)  we find  Iy(2)Iy-1(z) =
iNgn(ﬁeNCOS(%)’“ﬁ, so that finally we find for the
kernel
F (33, T+ iﬁy) ~ie 20 e iwiy—mp(@)|wly oN cos 26
N
— je Ne—iwgy—mp(@)|wly (142)

equivalent to Eq. (35).

Finally, the kernel F5 (a:, T+ 1%y) is obtained by dif-
ferentiating (141) over 7, setting n = 0, and multiplying
by factor IV, which yields the relation

Fy (x, T+ 1%y)

~ N[g - iswwp(x)}Fl (:L', T+ iiy),

¥ (143)

which is equivalent to (36).
Appendix B: “Soft edge” asymptotics of Hermite

polynomials, Cauchy transforms,
and the kernels involved

We start again with
22
INin(z) = eNTJNJrn(x) )

o0
IN4n(T) :/ d‘]qN+ne_%q2+1NW
0

and replace the contour with the sum of two contours
[0,i]U[i,1 + oo], so that, correspondingly, Jyin(x) =

(144)

JJ(\;)JM(:E) + Jﬁzn(x) In the first contour we parameterize
g =ip, p € [0, 1], so that

1
I\ (@) = iN*”“/ dpp™Hr Bt Ner
0

and in the second contour we put ¢ = i + ¢, Vt > 0, so
that

I (@) =/0 dt(i + )NV Hrem FEHD N,

(146)
We will be interested in the regime x = 2 + #, with
¢ of the order of unity, and N > 1. Let us start with

rewriting (146) as

7D ($>::e_%y/mih(i+¢)N+neuv%u+ﬂge—Nc@%
0

(145)

N4+n
2

L) = % Cit—n(i+1). (147)

The saddle-point equation is % =0=1- tii,

which has the only solution ¢ = 0. Expanding for t < 1
gives L(t) =~ —Ini — 1? + O(t*). Introducing the scaled

i —
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variable t = 17z we easily find to the leading order

s N+n 1
(@) = e e M ay(Q),

a1(¢) :/ drelm¢tis, (148)
0

Similarly, in the integral (145) we make the substitution

p=1- NI/37 with 7 € [0, N'/3 — oo] and after replacing
r =2+ N2/3 and expanding for 7 < N'/3 find to the
leading order
s N+n+1 1
I 1 _3 _N3
']J(Vzl-n(x)% N1/3 ¢ ZNe NSCaQ(C)v
o0 .3
()= / dre™s 7, (149)
Combining, we finally have for x = 2 + N2/3
iNJrn 1y N3 ¢
IN"F”(Q:) ~ N1/3 ez (§)7
a(Q) = a1(¢) + ia2(¢), VCeC. (150)
Note: Introduce the two functions
1 [ 3
Ai(¢) = f/ dr cos (T( + T) (151)
™ 0 3
and
1 [ 3 1 [ 23
Bi(¢) = f/ dein(TC + T) + */ dre™ =7,
Y 0 3 e 0
(152)

which are the two standard linear independent solutions
of the Airy equation f”(¢)—(f(¢) = 0. Obviously, a(¢) =
m[Ai(¢) + iBi(¢)].

After substitution to (125) this yields (for real ¢ and
Vn < N) to the leading order

. 1
PN+n <2+ Ng/s) ~ V2N eaN eNECAI(() . (153)

We see that to this order there is no dependence on n,
which will result in vanishing of the corresponding ker-
nel. To find beyond-the-leading order corrections we will
use the exact recursion: py_1(z) = % Spn(z). In the
“soft edge” scaling regime we, correspondingly, have

¢ 1 d ¢
pN1(2+N2/3 ZWCTCPN 2+W , (154)

¢ 1@ ¢
pN2(2+]\72/3 :N2/3d7C2pN 2+N2/3 , (155)

which results in
¢ cas
<2+ N2/3 ~ An e CAN((),

N = \/27TN1/6G%N

pv-a (24 55 ) = Ave < 10 + par)]

S
N2/3

PN-2 (2 + ) ~ Ayelie [Ai(C) + yi7EAL(0)

Y. V. Fyodorov

+ 5 A ). (156)

Remembering the relation (131) we have for the kernel

Wiz, z) at x =2+ N2/3

Wi(z,z) = N[py_1(z) — py(2)pn—2(z)]
~ 2nN?/3eN eQN%Cp(C) , (157)
where we denoted p(¢) = Ai’(¢)2—Ai(¢)Ai"(¢) (which in-

deed is proportional to the mean GUE eigenvalue density
in the “soft edge” regime). Then in view of the exact rela-
tion Wa(z,z) = LW (z,2) = N2/3d%W1(x, x) it follows
to the leading orderin N > 1 Wy(z,z) = 2NW; (z, ) for
r=2+ N2 +375- This is indeed compatible with the “bulk”
relation (37) Wa(z,z) = NaWi(x,x) as now =z ~ 2. We
shall see however that for our goals we need to keep the
corrections to this approximation

1 d
Wa(e, z) & 2NN &2V 9N p(0) + N2/ Lp(0)
(158)
so that
Wo(z,x) 23 1 d
_ = + - s
2 (2,2) ©ac"
¢
T=2+4 2 (159)
In what follows we will also need a similar recursion
for In(z), which is simply Iy_1(z) = —%-LIy(2).

It can be easily derived from the integral represen-
SN2
tation (126) by using the identity (e~ %(@~12)%) =

—id%(e*%(qfimﬁ) and integrating by parts. This im-
plies
C 1 N%C e lN 1N
In 2+W ~ Ane a((), AN:N1/362 ,
I 9 ¢\ i AveN3C L,
N-1 + N2/3 ~ —1AN¢€C CL(C) + WCL (C) s
7 5 ¢\ . 27 eN3C
N—-2 + N2/‘3 N( 1) N€
2 ! 1 "
x a(¢) + Ni/z? )+ N/ (€)]- (160)

Now, we use (134) for v =2+ ﬁ and € = N“’Tgs:

CHiwg) \Ntn Nin-1 | N
fN+n(2+ N2/3 =—(-1) Sw o
N Csw +ilw]i )
X exp (-2 <2Sw —+ W
CSw + ifwly
XIN+n<25w+]V2/3|,| . (161)

Using (150) we get the leading order expressions for
w > 0:

+ iwy

(o i

1 P
)~ e ),
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N1/6
BN:fﬁe*% . w>0, (162)
T
where
0o ) .3 ~
a(¢ + iwy) = / drel™cti% g—wir
0
0 3.
+ i/ dre™¢ T elwiT, (163)

Similar calculations can be performed for w < 0 (this

requires to know asymptotics of In(z) around x = —2)
with the result
C+ iwg WA Ctieda e v
(2 Sl ) B DA ),
N6
By = — e 2N w>o0, 164
N o (164)
where
0 .3
a(¢ + iwy) :/ dre= 17615 gwiT
0
e 3.
fi/m dre™¢ T ¢!wiT, (165)
0

Combining these two formulae for any real w we can
write

fN(Q_A'_Hin

N2/3

N6
2N
e 2 y

) ~ stNe C+1wy) a(Cw),

(166)
o0 . 73 N

w) = / dr ot (76 olwlir
0

) 8
+isw/ S e L (167)
0

<Jalcw) + gimacw)] (169)

where the dash stands for the derivative over &.
Now we substitute (168) and (156) to the kernel

iwy y
Fy (x, x+ Nzi) N (ai—i- N2/3>pN—1(I)

y ¢
_fN 1(17"‘ N2/3> (x)? x72+N2/37

and obtain

A2+

(169)

S

¢+ iwy —N —iNY3wg
N2/3° N2z )¢ ¢ s,

x [Ai(¢)a/ (¢, w) — AT'(¢)a(¢, w)]-

A similar calculation gives also

(170)

Fy (Jf, T + ]i;:;i) ~ Ne—Ne_iNl/zwgsw
" { [Ai(O)a’ (¢,w) = AT'(O)a(¢,w)]
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- Nl 75 [A"(Qa(Cw) — a’(g,w)Ai’(g)}}. (171)

We see that to the leading order Fj (x T+ A‘[“;}’;) ~

NFl(x T+ N2/~3) in the regime x = 2 + N2/3, in full

agreement with the z — 2 limit of (36). We shall see
however that for our goal we need the full expression
(171).
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