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Excitonic Magnetoabsorption of Cylindrical Quantum Disks

P. Schillak∗ and G. Czajkowski
University of Technology and Life Sciences, Bydgoszcz, Poland

We show how to compute the optical functions (the complex magnetosusceptibility, dielectric function,
magnetoreflection) for semiconductor quantum disks exposed to a uniform magnetic field in the growth direction,
including the excitonic effects. The method uses the microscopic calculation of nanostructure excitonic wave
functions and energy levels, and the macroscopic real density matrix approach to compute the electromagnetic
fields and susceptibilities. The electron–hole screened Coulomb potential is adapted and the valence band
structure is taken into account in the cylindrical approximation, thus separating light- and heavy-hole motions.
The confinement potentials are taken as step-like both in the z and in-plane directions. Numerical calculations
have been performed for In0.55Al0.45As (disk)/Al0.35Ga0.65As (barrier) and InP/GaP disks and the results are in
a good agreement with the available experimental data.
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1. Basic equations

In the effective mass approximation the exciton is
treated as a hydrogen-like atom, where the electron and
the hole interact via the Coulomb potential screened by
the semiconductor dielectric constant. In typical II–VI
and III–V semiconductors (GaAs, for example) the di-
electric constant is large and the Wannier–Mott excitons
occur, having large Bohr radius and small binding en-
ergy (a few meV). In bulk semiconductors the relative
and the center-of-mass motion of the electron–hole pair
separate and the excitonic energy levels follow the Ryd-
berg formula −R∗/n2. In semiconductor nanostructures
the exciton is squeezed and its binding energy increases
even by an order of magnitude. Due to confinement ef-
fects accompanied by the e–h Coulomb interaction, the
separation of the relative- and center-of-mass motion is
not possible which makes the calculation of the energy
levels very difficult.

On the other hand, potential applications of semicon-
ducting nanostructures in novel optoelectronic devices
make the determination of the excitonic energies and re-
sulting optical properties important, since the excitonic
resonances occur in the mostly used visible excitation
region. In consequence, there is a motivation for devel-
oping methods of calculation of the excitonic states, wave
functions and the resulting optical properties. Here we
consider semiconductor quantum dots of cylindrical sym-
metry, where the carriers move in the dot material in the
step-like potentials in all directions. Such dots are also
called the quantum disks (for example, [1] for references).

In addition, a constant magnetic field is applied
along the symmetry axis. We use the effective-mass-
-approximation thus obtaining a two-particle Schrödinger
equation where the nanostructure Hamiltonian contains
the kinetic energy terms, the Coulomb potential and the
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confinement potentials. The Schrödinger equation refers
to a 6-dimensional configuration space and its analytical
solution is not known. Also a direct numerical integra-
tion, due to the dimensionality, is rather hopeless.

We have recently proposed [2–6] an approximation
where the 6-dimensional problem is reduced to a sys-
tem of 2-dimensional differential equations, for which the
numerical solution is available within a finite computer
time. The reduction of the dimensionality goes in the
following way: first we extract a 4-dimensional subspace
(in-plane coordinates), where the one-particle eigenfunc-
tions and eigenvalues can be obtained analytically
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mze,h being the effective masses in the z-direction and µ‖
the in-plane e–h reduced mass, H‖j are the one-particle
Hamiltonians of the two-dimensional problem in the
plane perpendicular to the z-axis (including the terms
related to the applied magnetic field), ε is the total en-
ergy, υc is the confinement potential, υc = (Ve, conf +
Vh, conf)/R∗, and r is the relative e–h distance. Since the
eigenfunctions and eigenvalues of the operators H‖ are
known, we expand the eigenfunction Ψ in terms of them,
arriving finally at the system of coupled two-dimensional
equations(
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where ε
(e)
n1m1 , ε

(h)
n2m2 are the known eigenvalues of the two-

-dimensional problem for an electron and a hole, respec-
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tively. The matrix elements V n′
n (ze, zh) of the Coulomb

interaction energy are fourfold integrals which can be re-
duced to triple integrals by changing variables and per-
forming one integration analytically, the index n stands
as an abbreviation for four indices, n = {n1,m1, n2,m2}.
The total angular momentum L = m1 + m2 is conserved
because of the axial symmetry of the problem, so the
sum contains only terms with fixed L, as marked in the
superscripts.

The above equations, transformed into a set of alge-
braic equations, are then solved numerically, giving the
eigenfunctions and eigenvalues. Having the nanostruc-
ture eigenfunctions and eigenvalues, we can determine
the system optical properties. Various methods can be
used: here we choose the real density matrix approach
(also called the Stahl approach) which gives the system
susceptibility (both real and imaginary part) — other
optical functions can be obtained from it [7, 8].

2. Results

The above described method is appropriate for nano-
structures obeying the cylindrical symmetry as, for exam-
ple, cylindrical quantum dots, quantum wires, quantum
rings, and quantum rods, when the static magnetic field
is applied along the symmetry axis.
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Fig. 1. Diamagnetic shift of the lowest exciton energy
calculated from Eqs. (2) for heavy-hole (dashed curve)
and light-hole (solid curve). The dots indicate the ex-
perimental results by Wang et al. [9].

For the purpose of illustration, we compared our nu-
merical results with the experiments by Wang et al. [9]
for the quantum disk with the radius R = 8.95 nm and
the height d = 3.22 nm, as shown in Fig. 1. The ma-
terial microscopic parameters, typical for In0.55Al0.45As/
Al0.35Ga0.65As system, are chosen to be the same as in
the paper by Janssens et al. [10]: the dielectric constant
εb = 12.71, electron masses md,e = 0.076m0, mb,e =
0.097m0, and confinement potentials V0,e = 258 meV,
V0,h = 172 meV. Here d denotes the disk, and b the bar-
rier parameters, respectively.

The dashed curve was calculated for heavy-hole mass
mhh = 0.45m0 and one can see that the theoretical result
underestimates the measurements. Much better agree-
ment is obtained when we assumed the light-hole mass
mlh = 0.18m0, similarly as in Ref. [10].

Fig. 2. (a) The relative positions of energy levels as
functions of the applied magnetic field for heavy-hole
exciton. (b) The same for light-hole exciton. Let us
note the anticrossing of all levels in both cases.

The calculated structure of energy levels for the heavy-
-hole and light-hole excitons, with total angular momen-
tum L = 0, versus applied magnetic field is presented
in Fig. 2. Let us note that the two structures are qual-
itatively different. The distance between a few lowest
levels is determined by the in-plane quantization due to
the spatial confinement and by the quantization due to
applied magnetic field. We have seen that the Coulomb
interaction introduces the anticrossing of all levels and
shifts the energies to lower values.

Next, we considered a InP (dot)/GaP (barrier) quan-
tum disk with the radius R = 8.0 nm and the height
D = 4.0 nm having in mind the experiments by Dewitz
et al. [11]. The electron and the hole effective masses
were assumed as me = 0.1m0, and mh = 0.35m0, re-
spectively, giving the reduced mass µ = 0.078m0. The
dielectric constant εb = 14.0 and the infinite confinement
potentials at the dot’s boundaries were assumed for an
electron and a hole. The deconvolution of photolumi-
nescence spectra enables to determine the magnetic field
dependent energies for the ground state and the first ex-
cited excitonic state.

Fig. 3. (a) The measured (circles) [11] and the cal-
culated (full lines) relative positions of energy levels
as functions of the applied magnetic field. (b) Imag-
inary part of the excitonic susceptibility for the
In0.55Al0.45As/Al0.35Ga0.65As quantum disk for mag-
netic field B = 2 T (dashed line) and B = 20 T (full
line).

The experimental results are marked as circles in
Fig. 3. A good agreement of the measured spectra with
our calculations can be observed.
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Additionally, our results are consistent with the conclu-
sion of Dewitz et al. [11] that the InP/GaP quantum dot
system was of type I. We obtained that, for a weak mag-
netic field, the energy distance between the first and the
second level depends mainly on the assumed disk radius.
The diamagnetic shift for the ground state is determined
by the electron mass and the hole mass determines the
behavior of the first excited level versus magnetic field.

Having the energies and wave functions, we apply the
real density matrix approach, which gives the optical
functions including magnetoabsorption and the magnetic
field dependent dielectric tensor for light- and heavy-hole
excitons. In Fig. 3b we present the calculated numeri-
cally imaginary part of the magnetosusceptibility for the
In0.55Al0.45As/Al0.35Ga0.65As quantum disk.

3. Conclusions

We have shown how magnetooptical functions for
quantum disks in the excitonic energy region can be com-
puted with a high degree of accuracy. The structure of
the optical functions spectra arises from the interplay
of three types of quantization: quantization connected
with the interaction of the charged particles with external
magnetic field, quantization according to the Coulomb
interaction and that connected with the finite size of the
considered nanostructure.
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