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We analyze the photoluminescence of excitonic complexes containing p-shell electron in the magnetic field
in the Faraday configuration. We demonstrate that despite the p-shell electron is not involved directly in the
recombination process, its g-factor influences the emission spectrum. We found that in the case of CdTe/ZnTe quan-
tum dots the p-shell electron is significantly less affected by the magnetic field than s-shell electron in the same dot.
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1. Introduction

Photoluminescence (PL) measurements are a conve-
nient experimental technique to study properties of self-
-assembled quantum dots (QDs). Due to fast energy re-
laxation [1] the observed photoluminescence is usually
related to the recombination of electrons and holes resid-
ing on the lowest (s-shell) orbitals. Emission from the
higher shells (p-shell, . . . ) is observed only under ex-
citation intensities strong enough to saturate the lower
levels. Typically, the p-shell emission takes place in en-
ergies higher than s-shell emission of the same dot by
tens of meV. Emission lines related to p-shell emission
are therefore often overwhelmed by s-shell emission of
other QDs in the area. Fortunately, some properties of
the excited orbitals can be inferred also from the s-shell
emission.

In this work we focus on magnetic properties of p-shell
electron studied via s-shell emission of CdTe/ZnTe QDs.
In particular, we will analyze the Zeeman effect of
two transitions related to excitonic complexes contain-
ing p-shell electron: X2− and XX−.

2. Experimental setup

We performed PL experiments on samples containing
self-assembled CdTe QDs with ZnTe barriers. The sam-
ples were grown using molecular beam epitaxy (MBE)
technique with intermediate layer of amorphous tellurium
to induce QD formation [2]. A surface density of obtained
QDs was 109–1010 cm−2. Details of the growth procedure
are described in Ref. [3].
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The measurements were performed at T ≈ 1.7 K in He-
-bath cryostat. QDs were excited non-resonantly using
frequency-doubled Ti:sapphire femtosecond laser. Reflec-
tive microscope objective immersed in the liquid He to-
gether with the sample enabled focusing on a spot of a di-
ameter below 0.5 µm. Such spatial resolution allowed us
to resolve individual emission lines related to single QDs
in the low-energy tail of QD band in the PL spectrum.
The PL signal was recorded using 0.5 m spectrograph
with a CCD camera. Linear polarizer and wave-plates
(a λ/2 and λ/4 retarder) were used in polarization-
-resolved measurements. Superconducting coil allowed
us to apply magnetic field up to 7 T in the Faraday con-
figuration.

3. Results

Examplary PL spectra of single dots measured in the
experiment are presented in Fig. 1. The emission lines
form typical pattern studied in detail previously [4, 5].
This enabled us to identify the lines related to recom-
bination of neutral and charged excitons (X, X+, X−,
X2−) and biexcitons (XX and XX−). Two of these tran-
sitions — X2− and XX− — include a p-shell electron.
This electron does not directly participate in the recom-
bination process, nevertheless it influences the emission
energy through exchange interaction [5, 6]. One of the
consequences of this interaction is a fine structure of these
transitions as shown in Fig. 1c,d.

We will now focus on the behavior of X2− and XX−
transitions in the magnetic field along the growth direc-
tion. It was demonstrated that in both cases the behavior
observed in the experiment can be satisfactorily modelled
simply assuming the same g-factor for electrons irrespec-
tive of the shell [5]. In general, the g-factors for s- and
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Fig. 1. (a), (b) PL spectra of single CdTe/ZnTe dots
measured without polarization resolution. (c), (d) PL
spectra measured in two perpendicular polarizations
demonstrating fine structure of X2− and XX−.

p-shell electrons are different but in the discussed case
the Zeeman effect of the hole dominates over the Zee-
man effect of the electron and therefore the splittings are
relatively well reproduced within the simple assumption
of equal g-factors. The verification of this assumption
requires precise comparison between (similar) splitting
values of different emission lines of X2− or XX−.

3.1. Zeeman effect in XX−

The difference between g-factors of electrons on dif-
ferent shells can be accessed by comparison of the Zee-
man effect on two emission lines of XX− recombination
(Fig. 2a). In the initial state of this transition only the
p-electron is affected by the magnetic field (other carriers
are paired on the s-shells). The transition leads to two
possible final configurations of the remaining carriers: (1)
electrons in triplet Sz = 0 state or (2) electrons in triplet
|Sz| = 1 state antiparallel to the hole spin. Thus, in
the first case the spectral g-factor (in convention where
g-factor of the neutral exciton is gh − ge) is given by
gh − gep and in the latter case the g-factor is given by
gh − ges . These expressions are more complicated after
including in-plane anisotropy but the difference between
them is still given by ges − gep [7].

Analysis of both splittings shown in Fig. 2b clearly
evidences a difference between spectral g-factors and thus
a difference between g-factors of s- and p-shell electrons.
The spectral g-factors yielded, respectively, 1.43 and 1.68
for QD A and 1.38 and 1.80 for QD B. In both cases
the difference is significant: 0.25 for QD A and 0.42 for
QD B. The difference is striking when compared with
typical value of s-shell electron g-factor ges ≈ −0.45 [8].
For both analyzed dots the g-factor p-shell electron is
thus much closer to 0 (i.e. less negative).
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Fig. 2. (a) XX− transition energy and (b) related split-
tings as a function of magnetic field for QD A.

3.2. Zeeman effect in X 2−

The difference between values of g-factors for s- and
p-shell electrons can be studied also in magnetophotolu-
minescence data of X2− shown in Fig. 3a. The recombi-
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Fig. 3. (a) X2− transition energy and (b) related split-
tings as a function of magnetic field for QD A. Solid
lines present fits of linear and

√
δ2 + (gµBB)2 functions

to the experimental data. Dashed line presents a fit with
g-factor value fixed to the value obtained from linear fit
of splitting denoted by ∆E(X2−

2 ).

nation of X2− splits into four lines in the magnetic field.
They are organized in two pairs. One pair originates from
the configuration of X2− where the p-shell electron and
the hole have parallel spins. These transitions lead to two
electrons in |Sz| = 1 triplet state. In such a case the spec-
tral g-factor is given by gh−ges as p-shell g-factor affects
the initial and the final state identically. The second pair
of lines originates from the configuration of X2− where
the p-shell electron and a hole have antiparallel spins.
Such configurations are mixed with in-plane anisotropy
leading to pronounced zero-field splitting. The Zeeman
effect can additionally increase this splitting according
to relation ∆E =

√
δ2 + (gµBB)2 where δ is the value

of the anisotropic splitting and g = gh − gep . The same
expression holds for the spectral splitting as the electrons
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in the final state are in Sz = 0 triplet configuration which
is not affected by magnetic field.

Figure 3 shows that splittings of both pairs exhibit
different g-factor values. The fitted values yielded, re-
spectively, 1.95 and 1.64 for QD A and 2.00 and 1.54 for
QD B. The difference between s- and p-shell electron
g-factors yielded 0.31 for QD A and 0.46 for QD B. In
both cases the values are comparable to the differences
inferred earlier from the XX− transition.

4. Conclusions

Our results clearly evidence the difference between
g-factor values of s- and p-shell electron. This demonstra-
tion bases solely on the emission from the s-shell. Such
a difference was previously observed in CdSe/ZnSe sys-
tem [7], however in that case the relation of s- and p-shell
electron g-factors was reversed (i.e., ges > gep). This dif-
ference is due to different relation of bulk g-factors in
Se- and Te-based systems. Unlike in selenide system, in
our case the conduction band g-factor of ZnTe barrier is
lower (more negative) than CdTe dot material. There-
fore, our results provide a strong argument supporting
the interpretation introduced in Ref. [7] that the crucial
factor responsible for observed g-factor variation is the
difference in the barrier penetration for s- and p-orbital.
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