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In this paper the notion of the Fibonacci and Lucas numbers is extended onto real indices. Next, these
new numbers are used for calculating real powers of certain matrices. The presented method to the extension of
elements of linear recurrence sequence to real indices ought to find practical application in wide understanding
metrology and medical diagnostics.
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1. Introduction

One of the main reasons behind the generalization of
the Fibonacci and Lucas numbers onto real indices were
the authors’ attempts at generalizing the powers of ma-
trices onto any real (complex) exponents [1].

Surely, standard grounds for such generalization of the
powers of any matrix A could be given by its Jordan de-
composition

A = BJ(A)B−1. (1)

If J(A) have a diagonal form

J(A) =




λ1 0
. . .

0 λn


,

it would be possible, almost without any consequences,
to assume that

Ax := B




λx
1 0

. . .
0 λx

n


B−1, x ∈ R (x ∈ C) ,

where a standard definition of the complex power is uti-
lized λx := exp(x ln λ), ln λ := ln |λ|+ i arg λ.

This method of generalizing the powers of matrices has
some potential drawbacks associated with the numerical
nature of a decomposition (1) (we are looking for not
only the eigenvalues of matrices A, but also of a similar-
ity matrix B). It turns out that in many specific cases,
when it is possible to describe, in a recurrent manner,
the elements of matrix An, n ∈ N:

An =




a11(n) a12(n) . . . a1k(n)
...

ak1(n) ak2(n) . . . akk(n)


,
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it would be sufficient to replice argument n ∈ N with a
more general argument x ∈ R (x ∈ C), provided that
we could “clearly” define aij(x). An example of such ap-
proach is the publication [1] and Sect. 5 of this one.

2. Basic definitions

The following three known identities satisfied by the
Fibonacci and Lucas numbers (denoted by Fn and Ln,
n ∈ N, respectively) form the basis of our generalization
of the definition of Fn and Ln for real indices n:

√
5Fn = αn − βn, (2)

Fn+1 − βFn = αn, (3)
and

Ln = 2αn −
√

5Fn , (4)

where n ∈ N, α := 1+
√

5
2 and β := 1−√5

2 ((3) and (4)
was discovered by Rabinowitz [2] and, independently, by
Wituła [3]). Such choice of the identities is by no means
accidental, but, in our opinion, results from the fact that
the number of technical procedures connected with the
process of generalizing definition Fn and Ln onto indices
n ∈ R should be as small as possible. Accordingly, as
indicated below, conditions (2)–(4) guarantee:

• optimal initial conditions,

• recursive extension procedure,

• simple relationships between the Fibonacci and the
Lucas numbers.

What more do we need? Thus, let us get down to work.
The generalized Fibonacci numbers Fs are given first

for s ∈ [0, 1) by (see (2)):
√

5Fs = αs − e iπs(−β)s, (5)

and, in the next steps, for s ∈ [1, 2), for s ∈ [2, 3), . . . and
at last for s ∈ [−1, 0), for s ∈ [−2,−1), . . . , all one’s are
defined by the relation (see (3)):

(755)
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Fs+1 = αs + βFs . (6)

Remark 2.1. We observe that α > 0 and −β > 0. So
in (5) only e iπs is a complex function.

Moreover we set (see (4)):

Ls := 2αs +
√

5Fs , s ∈ R , (7)

which defines the generalized Lucas numbers.
Remark 2.2. We note that (6) and (5) implies

Fs+1 = e iπs(−β)s + (
√

5 + β)Fs

= e iπs(−β)s + αFs , (8)

which is the dual form of the formula (6).
Remark 2.3. We note that similarly to our definition
of numbers Fs and Ls, s ∈ R, the Γ (z) function for all
z ∈ C\{0,−1,−2, . . .} can also be defined. First, by the
Euler reflection formula

Γ (z)Γ (1− z) =
π

sin(πz)
(9)

we extend the definition of Γ (z) from the strip 0 <
<(z) ≤ 1

2 onto the strip 0 < <(z) < 1. Next by the
functional equation of Γ (z):

Γ (z + 1) = zΓ (z) (10)

we extend the definition of Γ (z) to all strips k < <(z) <
k + 1, k ∈ Z. Along the line <(z) = 1, the definition
of Γ (z) by the continuity argument is given (from the
integral definition of Γ (z)) which by (10) implies the def-
inition of Γ (z) for <(z) = k, k = 2, 3, . . . and, simultane-
ously, blocks the possibility of defining Γ (z) for <(z) = k,
k = 0,−1,−2, . . .

3. Fundamental properties

Now, some fundamental properties of Fs and Ls

(s ∈ R) are listed as follows:
√

5Fs = αs − e iπs(−β)s, (11)

Ls = αs + e iπs(−β)s, (12)

Fs+2 = Fs+1 + Fs , (13)

Ls+2 = Ls+1 + Ls , (14)

F−s = −e− iπsFs , (15)

L−s = e− iπsLs , (16)

F2s = FsLs , (17)

Ls = Fs+1 + Fs−1 , (18)

e iπtLs−t = Ft+1Ls − FtLs+1 , (19)

FsFt − Fs−rFt+r = e iπ(s−r)FrFt−s+r , (20)

Fs+t+1 = Fs+1Ft+1 + FsFt , (21)

5F 2
s = L2s − 2e iπs, (22)

5F 3
s = F3s − 3e iπsFs , (23)

25F 4
s = L4s − 4e iπsL2s + 6e i 3πs, (24)

and, generally, we have

5nF 2n
s =

n∑

k=0

(
2n

k

)
(−1)k e ikπsL2(n−k)s , (25)

5nF 2n+1
s =

n∑

k=0

(
2n+1

k

)
(−1)k e ikπsF(2n+1−2k)s , (26)

L2n
s =

n∑

k=0

(
2n

k

)
e ikπsL2(n−k)s , (27)

L2n+1
s =

n∑

k=0

(
2n + 1

k

)
e ikπsF(2n+1−2k)s , (28)

In addition, we have

d
ds

Fs = − iπ e iπs(−β)s[1 + 2 ln(−β)] + Fs ln α . (29)

4. Proofs of selected properties

(13). If (6) is applied three times, we get

Fs+2 = αs+1 + βFs+1 = αs+1 + β(αs + βFs)

= αs(α + β) + β2Fs = αs + (β + 1)Fs

= Fs+1 + Fs .

(15). By (11) and by the equality αβ = −1 we obtain
√

5F−s = α−s − e− iπs(−β)−s = (−β)s − e− iπsαs

= −e− iπs
√

5Fs .

(17). From (5) and (12) follows.

(18). By (7) and (6) we have

Ls = 2αs + (β − α)Fs = (αs + βFs) + (αs − αFs)

= Fs+1 + α(αs−1 − Fs)

= Fs+1 − αβFs−1 = Fs+1 + Fs−1 .

(19). At first, we note that

e iπtαs(−β)t + e iπsαt(−β)s = e iπtαt(−β)t

× (αs−t + e iπ(s−t)(−β)s−t)
(12)
= e iπtLs−t .

On the other hand, using (6) and (8), we get

e iπtαs(−β)t + e iπsαt(−β)s = (Fs+1 − βFs)

× (Ft+1 − αFt) + (Ft+1 − βFt)(Fs+1 − αFs)

= 2(Fs+1Ft+1 − FsFt)− (α + β)

× (FsFt+1 + Fs+1Ft) = 2(Fs+1Ft+1 − FsFt)

−FsFt+1 − Fs+1Ft = Ft+1(2Fs+1 − Fs)

−Ft(2Fs + Fs+1)
(13),(18)

= Ft+1Ls − FtLs+1 .

(20). By (5) we obtain

5FsFt = (αs − e iπs(−β)s)(αt − e iπt(−β)t)
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= αs+t + e iπ(s+t)(−β)s+t − e iπsαt(−β)s

− e iπtαs(−β)t. (30)

Hence, the following formula is deduced:

5FsFt − 5Fs−rFt−r = e iπt(−β)tαs−r(e iπr(−β)r

−αr) + e iπ(s−r)(−β)s−rαt(αr − e iπr(−β)r)
(5)
= e iπ(s−r)(−β)s−rαt

√
5Fr − e iπt(−β)t

×αs−t
√

5Fr = e iπ(s−r)(−β)s−rαs−r
√

5Fr

× (αt−s+r − e iπ(t−s+r)(−β)t−s+r)
(5)
= 5e iπ(s−r)FrFt−s+r .

(21). From (30) we deduce

5(Fs+1Ft+1 + FsFt) = (α2 + 1)αs+t

+(β2 + 1)e iπ(s+t)(−β)s+t =
√

5(αs+t+1

+ e iπ(s+t)(−β)s+t+1)
(5)
= 5Fs+t+1 .

5. Some applications

Let us set[
1 1
1 0

]s

:=

[
Fs+1 Fs

Fs Fs−1

]
, (31)

for every s ∈ R.
Why is the relation (31) correct? First, we note that
[

Fs+1 Fs

Fs Fs−1

][
Ft+1 Ft

Ft Ft−1

]

=

[
Fs+1Ft+1 + FsFt Fs+1Ft + FsFt−1

FsFt+1 + Fs−1Ft FsFt + Fs−1Ft−1

]

=

[
Fs+t+1 Fs+t

Fs+t Fs+t−1

]
,

which means that (31) is correct for rational s. Next,
it is sufficient to apply the continuous argument for all
other s ∈ R.

Similarly, we can define:
[

1 −1
−1 0

]s

:=

[
Fs+1 −Fs

−Fs Fs−1

]
, s ∈ R , (32)

and, more generally, it can be defined for every ε ∈
C\{0}:

[
1 ε

ε−1 0

]s

:=

[
Fs+1 εFs

ε−1Fs Fs−1

]
, s ∈ R . (33)

What else can be done? What other kind of matrices
can be treated in a similar way?

There are quite a lot of publications concerning these
issues (see [4–7]). For example in [4, 5] the foundations
for the description of the following powers are found:

[
x 1
y 0

]s

, x, y, s ∈ R

in view of generalized bivariate Fibonacci polynomials.
The most general procedure is contained in [6], making
it possible to calculate

AxB = Fx , x ∈ R ,

where

A =




c1 c2 . . . ck−1 ck

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




,

B =




−1 2 0 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1




,

Fx =




f1
x f2

x . . . fk
x

f1
x−1 f2

x−1 . . . fk
x−1

...
...

. . .
...

f1
x−k+1 f2

x−k+1 . . . fk
x−k+1




,

and for x = n ∈ N we have

f i
n =

k∑

j=1

cjf
i
n−j

with initial values f i
1−k, f i

2−k, . . . , f i
0, where cj

(1 ≤ j ≤ k) are constant coefficients.

6. Final remarks

Many authors have extended the Fibonacci and Lucas
numbers to arbitrary real (complex) subscripts [8–12].
Contribution to this problem presented here is original.
Also the adaptation of this method to the extension of
elements of linear recurrence sequence to real indices is
probably new.

The presented method oughts to find practical appli-
cation, among others in photonics and in medical diag-
nostics [13–17].

In the author’s opinion, the most important element
of this paper is presented here the definition of real pow-
ers of matrices. The author was already concerning this
problem in different works [1, 16].
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