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The paper presents a method of theoretical derivation and numerical calculation of the open-end correction
coefficient for an arbitrary cut-on mode propagating in acoustic waveguide. Actually, the so-called open-end
correction coefficient of acoustic tube, frequently discussed in literature, refers to specific conditions, when the
wave heading the outlet is the plane wave. It follows from the fact that the plane wave is a commonly applied
approximation when considering phenomena in duct-like devices or systems (tubes, musical instruments, heating
or ventilation systems). The aim of the paper is to extend the concept of the open-end correction on the so-called
higher Bessel modes, that under some conditions can also propagate in a duct. Theoretical results, forming
the basis for numerical calculations, were obtained by considering diffraction at the duct end and applying the
Wiener–Hopf factorization method. As a result, the formula for the acoustic field inside the duct was derived.
For each Bessel mode present in the incident wave the reflected wave is composed of all cut-on modes of the same
circumferential order. Each mode present in the reflected wave is characterized by the complex reflection/coupling
coefficient, argument of which describes phase change at the duct end and therefore the open-end correction
coefficient can be attributed to each coupled pair of modes.

PACS: 43.20.Rz, 43.20.Mv

1. Introduction

The aim of this paper consists in an attempt to gen-
eralise the concept of the so-called waveguide open end
correction onto higher allowable modes that may prop-
agate freely in a cylindrical duct provided the so-called
reduced excitation frequency ωred = ωa/c = ka (where
ω — radial velocity, a — waveguide radius, c — speed
of sound, k — wave number), known also as the diffrac-
tion parameter or the Helmholtz number, is higher than
the cut-off frequency for the mode in question [1]. For
a perfectly rigid waveguide that, in view of its proper-
ties, constitutes a good model for many components of
machines, devices and/or systems used in practice and
for that reason is the most common object of investi-
gation, the principal mode (that with the lowest cut-
-off frequency equalling 0) is the plane wave [2]. The
first non-symmetric mode appears for the reduced exci-
tation frequency ωred > 1.84, and the next, symmetric,
for ωred > 3.83, i.e. above frequencies corresponding to
about 200 Hz and 420 Hz, respectively, in a duct with
diameter of 1 m. As the plane wave approximation is
the most commonly used approach to phenomena occur-
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ring in a cylindrical waveguide, the open end correction
values quoted in the literature refer, strictly speaking, to
the correction calculated specifically for the plane wave.
The plane wave approximation, according to numerous
authors [2–5], proves insufficient in many cases and may
even lead to false conclusions in such important matters
as e.g. directivity of wave energy radiation outside the
duct (for the plane wave, the maximum radiation occurs
along the duct axis, while no energy at all is emitted in
this direction from higher modes [4]). For that reason,
especially in the case of waveguides with large diameters
or high excitation frequencies, description of phenomena
occurring in such system obtained by means of the plane
wave approximation may prove too rough. In order to ob-
tain a more adequate description of these effects, closer
to these occurring in actual ducts, it may be beneficial to
calculate theoretically and/or numerically the duct outlet
corrections for modes higher than the plane wave. This
in fact is the purpose of this paper.

As a result of wave (plane or higher mode) reflection,
a phase change at the duct end occurs that can be associ-
ated with argument of the complex reflection coefficient
[2, 6–8]. Therefore, acoustic velocity loop and acoustic
pressure node are no longer located at the open wave-
guide outlet, as is usually assumed in basic models of the
phenomena. That point occurs a little further outside the
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outlet and therefore, in order to calculate the system’s
eigenfrequencies, it is necessary to add certain value ∆l
to the actual waveguide length. It is therefore convenient
to define the so-called effective waveguide length:

lef = l + ∆l , (1)

where l is the actual duct length. It follows from the
above definition that for a duct with one end open,
lef = (2n + 1)λ/4. Therefore, ∆l represents an increase
of the actual duct length compensating diffraction phe-
nomena occurring at its open end and related to change
of the reflected wave’s phase, that for the problem dis-
cussed here can be expressed as the product of the open
end correction α and duct radius a, ∆l = αa [2, 9].
The correction value depends not only on the type of
wave propagating towards the outlet but also on geomet-
rical features characterising the outlet, among which one
can number existence of a baffle with given radius (from
zero, corresponding to the unbaffled duct, to the classi-
cal case of infinite plane baffle); duct profile (constant
or variable radius, e.g. duct terminated with an acoustic
horn); edge type (sharp, rounded etc.) [2, 9–12]. The
issue discussed herein constitutes therefore a special case
of acoustic wave radiation in the cylindrical waveguide
outlet area with given boundary conditions reflecting ge-
ometrical and physical characteristics of a system. The
problem, for a wide variety of boundary conditions, is ex-
tensively represented in the literature, although it must
be noted that analytical solutions have been obtained
only for a narrow class of configurations. As an example
of attempts made to calculate the open end correction
value for plane wave, one can quote results obtained in
the low frequency approximation (ωred = ka→ 0) by the
following authors:

— Rayleigh (1945): α = 0.785 — a limiting case corre-
sponding to baffle radius tending to zero; α = 0.824
— for infinite baffle [9];

— Levine and Schwinger (1948): α = 0.6133 — for
cylindrical waveguide without baffle [10];

— Nomure (1960): α = 0.8217 — a result obtained by
means of numerical analysis carried out for cylin-
drical waveguide with infinite baffle [11].

The above analytically obtained open end correction
values have been confirmed later by means of numerical
and experimental methods carried out for different baffle
radii by Ando [12]. Further research revealed that the
value is strongly affected by the duct outlet edge geome-
try [13].

2. Theoretical fundamentals

Solution of the wave equation in semi-infinite perfectly
rigid cylindrical waveguide stretching from z = −∞ to
z = 0, with the outlet at z = 0, for harmonic excitation
exp(iωt) has in the cylindrical coordinates (ρ, ϕ, z) the
form

Φml(ρ, ϕ, z) = Aml e imϕ

[
Jm

(
µml

ρ
a

)

Jm(µml)
e iγmlz

+
Nm∑

n=1/0

Rmln

Jm

(
µmn

ρ
a

)

Jm(µmn)
e− iγmnz

]
, (2)

where Aml — complex amplitude of the incident wave’s
mode (m, l); Jm — the Bessel function of order m; Rmln

— coefficient of reflection/transformation of mode (m, l)
into mode (m,n); µml, µmn — roots of derivative of the
Bessel function Jm; γml — the longitudinal wave num-
ber of mode (m, l); Nm — index of the highest mode
propagating in a duct at given value of the diffraction
parameter ka. The reflection/transformation coefficient
is defined as:

Rmln =
Bmn

Aml
, (3)

where Bmn is the complex amplitude of wave reflected/
transformed at the duct open end. The coefficient can be
represented by its modulus and phase θmln according to
the formula

Rmln = −|Rmln|e iθmln . (4)
Given phase θmln of the plane wave reflection coefficient,
one can calculate the so-called open end correction rep-
resenting the plane wave phase change occurring at duct
outlet normalised by the diffraction parameter ka:

αmll =
θmll

2γmla
, (5)

where γml is the longitudinal wave number

γml =

√
k2 −

(µml

a

)2

. (6)

Detailed calculations lead to the following formula for the
reflection coefficient phase [2]:

θmln =
1
2





Ym(γml) + Ym(γmn),
l + n — even number,

Ym(γml) + Ym(γmn) + π,

l + n — odd number,

(7)

where

Ym(w) =
2wa

π
− Ωm(va)− i lim

N→∞
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γmn +w

γmn−w

− 1
π

∫ γN

−γN
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]
, (8)

and
v =

√
k2 − w2 . (9)

Function Ωm(va) is equal, to an additive constant, to
argument of derivative of the Hankel function of first or-
der H

(1)′
m ,

Ωm(va) = arg H(1)′
m (va)± π

2
= arctan

N ′
m(va)

J ′m(va)
± π

2
,

(10)
where Nm is the Neumann function of order m, with
sign “+” applicable to m = 0 and “−” to m 6= 0. The
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argument was selected so that

Ωm(0) = 0 , Ωm(µmn) =

{
nπ, for m = 0,

(n− 1)π, for m 6= 0,

(11)
where a different value for m = 0 results from the fact
that roots µmn of the Bessel function for m = 0 are
numbered starting from n = 0.

It can be seen from the above that for the diffraction
parameter values 0 < ka < µ01, where µ01 = 3.83, only
the plane wave may propagate freely in a duct with re-
flection coefficient

θ000 = Y0(k) , (12)

while for the diffraction parameter values µ01 < ka <
µ02, where µ02 = 7.02, both the plane wave and the first
symmetric mode are allowed. Phase of the coefficient
representing transformation of plane wave into the first
allowable mode occurring in the course of reflection at
the open end is then

θ001 =
1
2
[
Y0(k) + Y0(γ01) + π

]
. (13)

For mode (0, 1), phase of the (0, 1)→ (0, 1) reflection
coefficient is simply

θ011 = Y0(γ01) , (14)

while phase of the (0, 1)→ (0, 0) coefficient representing
transformation into plane wave can be expressed as

θ010 =
1
2
[
Y0(k) + Y0(γ01) + π

]
. (15)

3. Numerical calculation results and conclusions

Numerical calculation of Y (w) values carried out ac-
cording to (8) in MATLAB computing environment al-
lowed to obtain plots of the open end correction.

Fig. 1. The open end correction for plane wave m = 0,
l = 0 compared to its values for consecutive axisymmet-
ric modes l = 1, 2, 3, 4, 5.

Results obtained for the plane wave case m = 0,
l = 0 (Fig. 1) and diffraction parameter ka from inter-
val (0,3.83), i.e. for reduced frequencies lower than the
cut-off frequency for the first symmetric mode (m = 0,
l = 1), are consistent with results obtained by Levine
and Schwinger [10].

For higher ka values, results presented in [10] are no
longer accurate, as the employed model does not ac-
count for the possibility of plane wave transformation
into other, higher-order axisymmetric modes (e.g. m = 0,
l = 1, 2, . . . ), occurrence of which affects value of the re-
flection coefficient R000 and, in the process, magnitude
of the open end correction α000. Value of this correc-
tion for small frequencies (ka → 0) corresponds to figures
quoted in the literature, α000 = 0.613, and applicable to
the case of an unbaffled cylindrical duct. The presented
graph allows to read out the correction values also for
other excitation frequencies.

Fig. 2. The open end correction for the first circumfer-
ential mode m = 1, l = 1, 2, 3, 4, 5, 6.

As a rule, open end correction values are small for
frequencies slightly above consecutive cut-off frequencies
and then increase reaching values close to this obtained
for the plane wave.

Fig. 3. The open end correction for circumferential
mode m = 2, l = 1, 2, 3, 4, 5.

Fig. 4. The open end correction for circumferential
mode m = 5, l = 1, 2, 3, 4.
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Figure 2 presents analogously the outlet correction for
consecutive modes of the same circumferential order m =
1. The first non-symmetric mode appears at ka = 1.84,
with maximum open end correction α111 value amounting
to about 0.24.

Figures 3 and 4 present open end correction plots for
first few circumferential modes with indices m = 2 and
m = 5 for which maximum values occur always for l = 1,
on the understanding that for mode (2, 1) the maximum
value is about 0.19 compared to about 0.1 for mode (5, 1).

All results presented above indicate strongly mode-
-dependent nature of the open end correction for
cylindrical ducts. Except for the plane wave, values
of the parameter for consecutive higher modes are
small just above their cut-off frequencies and have local
minima at frequencies corresponding to appearance of
even higher modes. An interesting feature of the open
end correction consists also in the fact that, except for
frequencies close to the given mode’s cut-off frequency,
the values determined for consecutive modes of the
same circumferential order m are close to each other
which means that for all these modes one obtains similar
values of the effective length lef and therefore loops
of acoustic velocity fall approximately at the same
distance ∆l from the outlet. Analysis of the obtained
results allows to define frequency ranges in which taking
the open end correction may have significant effect
on determination of the examined system parameters
containing a duct-type component.
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