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In this paper, we investigate semiconductor nanowaveguides (i.e. ridge waveguides with core-widths narrower
than 1 µm) intended to act as novel optical light sources through nonlinear wavelength/frequency conversion. In
particular, numerical calculations have been performed in order to design suitable photonic devices (fabricated
in the AlGaAs/GaAs platform) capable of high efficiency second harmonic generation. Particular interest has
been dedicated to the effective conversion of optical signals from 1520–1600 nm (the third telecom window) down
to 760–800 nm. We demonstrate that the output wavelength (resulting from modal phase-matching) can be
dynamically tuned by proper adjustment of the temperature and/or geometrical parameters of the waveguides. In
addition, by changing the waveguide width it is also possible to modify the device dispersion characteristics, giving
the possibility to work in the region of anomalous dispersion and thus allowing for the generation of temporal
solitons.

PACS: 42.82.Et, 42.65.Ky, 42.79.Nv, 42.70.Mp, 78.67.Uh

1. Introduction

Second harmonic generation (SHG) is a second-order
nonlinear optical process involving the χ(2) electric sus-
ceptibility tensor. In non-centrosymmetric materials, it
allows for the conversion of two pump photons into one
at twice the optical frequency (ω + ω→ 2ω) [1]. In prin-
ciple, the efficiency of the SHG process relies on a phase-
-matching condition (derived from momentum conserva-
tion) and the interplay between the spatial beam profiles
of the pump and the generated harmonic. The phase-
-matching condition requires the effective refractive in-
dices of the modes at the fundamental frequency and
second harmonic to be equal (as it is for type-I SHG in-
teraction). However, this cannot be easily achieved in an
arbitrary geometry due to the inherent material disper-
sion. For momentum conservation to be satisfied, bulk
birefringent crystals (such as BBO and KTP) [2, 3] as
well as waveguide geometries (in polymers [4], LiNbO3

[5, 6], and semiconductors [7–11]) have been successfully
used. The latter solution has recently gained a significant
amount of scientific attention, resulting in the develop-
ment and improvement of several phase-matching tech-
niques in waveguiding structures. They allow for com-
pact on-chip integration and may lead to an increased
energetic efficiency (when compared to traditional bulk
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nonlinear crystals) [12, 13], heading thus to practical ap-
plications as integrated frequency converters for novel all-
-optical applications [14, 15].

Of particular importance for this paper, SHG has been
previously realized in isotropic AlGaAs by way of modal
phase-matching (MPM) [7, 8], quasi-phase-matching
(QPM) [8–10], or artificial birefringence [8, 11]. Unfor-
tunately, most of the proposed solutions require costly
and complex fabrication procedures. In particular, they
include (i) the introduction of additional thin oxidized
layers of Al (in the core region of the waveguides) in or-
der to break the isotropy of GaAs and induce artificial
birefringence [11]; (ii) periodic domain orientations or
quantum well intermixing [8–10] for QPM; or (iii) multi-
-step etching of “M-shaped” waveguides for MPM [7, 8].
In addition, even more advanced photonic structures in
the form of the Bragg reflector waveguides [16], ring res-
onators [17], and waveguide couplers [18] suitable for
SHG have also been investigated.

In this paper we propose an alternative solution based
on simple AlGaAs nanowaveguides (i.e. narrow ridge
waveguide structures). Their specific geometry allows for
the MPM condition to be satisfied across the third tele-
com spectral window, as well as for a relatively high SHG
efficiency due to an increased nonlinear overlap; a result
of the small and tightly confined modes of this nanostruc-
ture. These devices also have numerous other advantages
such as: (i) a simple fabrication process (when complex
oxidization or multi-step-etching, typically required for
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other phase-matching techniques, are avoided); (ii) pos-
sibility of integration with other optical components on-
-chip (which is questionable for “M-shaped” waveguides);
and (iii) tunability of the phase-matching wavelength by
simply varying the temperature or through the use of
various waveguides of ranging widths on a single chip.
Moreover, the photonic device proposed here can be also
applied for several different functionalities exploiting also
the third-order nonlinearity of AlGaAs [19], such as soli-
ton formation.

2. Theoretical background

Second harmonic generation can be considered as a
specific case of the second-order nonlinear sum-frequency
generation process (taking place in a nonlinear optical
medium for which the second-order electric susceptibility
χ(2) is nonzero) and explained in terms of the exchange of
photons between the various frequency components of the
optical fields. In a quantum-mechanical description, it
can be also thought of as the creation of a single photon at
the frequency 2ω from two input photons of fundamental
frequency ω.

SHG can be accomplished via a type-I interaction,
whereby the second harmonic is created from a single
polarized beam at the fundamental frequency, or via a
type-II interaction, where two distinct beams [usually
of different (e.g. linear orthogonal) polarizations] of the
same fundamental frequency are used to create the sec-
ond harmonic [1].

Let us consider the electric field Ẽ of a continuous wave
(CW) beams propagating in a waveguide parallel to the
z direction and depending on the time coordinate t given
by the following expression:

Ẽi(x, y, z) = Ãi(z)Ei(x, y) exp(iβiz − iωit) , (1)

where Ã is the electric field envelope, E is the transverse
vectorial modal electric field distribution, β is the prop-
agation constant, ω is the angular frequency, and the
subscript i refers to a specific beam.

The general evolution equations describing a type-II
SHG process for a CW excitation (as defined above, i.e.
achieved by neglecting the effects of chromatic disper-
sion, group velocity mismatch and the temporal depen-
dence of the nonlinear response) can be obtained from
Maxwell’s equations by assuming a quadratic nonlinear
polarization. By making use of the slowly-varying enve-
lope approximation, and neglecting all terms not related
to the SHG process (which will not be phase-matched),
these evolutions equations can be written in the following
form [1]:




∂zAFF1 = iη exp(− i∆βz)ASHA∗FF2−αFF1AFF1/2,

∂zAFF2 = iη exp(− i∆βz)ASHA∗FF1−αFF2AFF2/2,

∂zASH = 2iη exp(i∆βz)AFF1AFF2−αSHASH/2,

(2)
where ∂z stands for the first-order derivative with respect
to the propagation direction z, * represents the complex

conjugate, the αi are the linear loss coefficients, and η is
an overlap factor [proportional to the normalized conver-
sion efficiency described by Eq. (5)]. Please note that the
electric field envelopes Ai in Eq. (2) are power-normalized
(thus given in units of W1/2) and differ from those intro-
duced in Eq. (1) by

A = Ã

[(
β

2µ0ω

∫ ∫
|E|2dxdy

)]1/2

.

The phase-mismatch factor is given by ∆β = (βFF1 +
βFF2 − βSH) = ω(nFF1 + nFF2 − 2nSH)/c, where ni are
the effective refractive indices of the i-th modes at a given
frequency, ω is the angular fundamental frequency (FF),
and c is the speed of light in vacuum.

For a type-I interaction (i.e. when a single polarization
state is present at fundamental frequency), Eq. (2) can
be simplified to

{
∂zAFF = iη exp(− i∆βz)ASHA∗FF − αFFAFF/2,

∂zASH = iη exp(i∆βz)A2
FF − αSHASH/2,

(3)
with the phase-mismatch factor ∆β = (2βFF − βSH) =
2ω(nFF − nSH)/c.

It can be demonstrated that the maximum conver-
sion efficiency for type-II SHG can be obtained when
the initial powers of the input pump beams are equal
(PFF1 = PFF2) [1]. Moreover, by assuming that the pump
beam(s) is (are) lossless and undepleted (i.e. neglecting
losses and assuming negligible depletion from the nonlin-
earity) the above equations [Eqs. (2), 3)] may be solved
leading to the following formula describing the power of
the SH signal:

PSH = η2L2P 2
FFsinc2(∆βL/2) , (4)

where L is the total length of propagation, and PFF is
the total power of the fundamental frequency (which is
PFF1 + PFF2 for a type-II interaction).

Fig. 1. Sinc2 function of the mismatch factor ∆β illus-
trating the dependence of the SH power in terms of the
phase-matching condition.

Equation (4) predicts that the power of the generated
second harmonic signal depends on the square of the in-
put power and also decays rapidly to 0 if phase match-
ing is not obtained. The latter is represented by a sinc
squared function (see Fig. 1) which reaches 10% of its
maximum value for
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∆βz = 4.637 , (4a)

and thus limits the input bandwidth depending on the
total distance of propagation.

When describing the efficiency of the SHG process, it is
beneficial to define the normalized conversion efficiency:

Γ =
PSH

L2P 2
FF

, (5)

which is simply equal to η2 in the case of perfect phase-
-matching (i.e. for ∆β = 0) and in the absence of losses.
To determine this maximal normalized conversion effi-
ciency theoretically it is necessary to perform a vecto-
rial analysis of the second-order nonlinear interaction,
in which the full form of the susceptibility tensor is
taken into consideration. The AlGaAs cubic (but non-
-centrosymmetric) crystal, belonging to the 4̄3m (point)

symmetry group, is characterized by the nonlinear ten-
sor whose elements (defined with respect to the crys-
tallographic planes) are all zero except χ

(2)
ijk = χ(2) for

i 6= j 6= k [1]. Here we assume that the waveguide length
is parallel to the 110 crystallographic direction instead
(see Fig. 2d). In the basis of the waveguide axes (defined
by the Cartesian coordinates as shown in Fig. 2c), the
nonlinear tensor must be rotated (by an angle of 45◦ in
x–z plane), resulting in the nonzero elements

χ(2)
xyx = χ(2)

xxy = χ(2)
yxx = −χ(2)

yzz = −χ(2)
zzy = −χ(2)

zyz

≡ χ(2). (6)

This results in the following form for the (nonlinear) over-
lap factor [13, 20]:

η = χ(2)

(
2ω2

ε0c3nFF1nFF2nSH

)1/2 ∫∫
WG

Ψ dxdy
[∫∫ |EFF1|2 dxdy

]1/2[∫∫ |EFF2|2dxdy
]1/2[∫∫ |ESH|2dxdy

]1/2
, (7)

where Ψ ≡ E∗
FF1xE∗

FF2xESHy + E∗
FF1xESHxE∗

FF2y +
ESHxE∗

FF2xE∗
FF1y − E∗

FF1yESHzE
∗
FF2z −

ESHyE∗
FF1zE

∗
FF2z − E∗

FF2yE∗
FF1zESHz, ε0 is the permit-

tivity of free space, and the x, y, z subscripts indicate
the vectorial components of the FF1, FF2 and SH
waveguide modes. As it will be discussed in the next
section, a type-I interaction is forbidden in the structure
analyzed here due to the particular orientation of the
waveguides with respect to the AlGaAs crystallographic
planes.

Fig. 2. Bandgap wavelength of AlxGa1−xAs as a func-
tion of the aluminum concentration (a). Material dis-
persion for different aluminum concentrations (b). At
a fixed wavelength, a higher Al content implies a lower
refractive index. An AlGaAs wafer structure (c) and
the resulting post-etching nanowire geometry designed
to meet the requirements for effective SHG (d). Crys-
tallographic orientation with respect to the waveguide
etched (along z-direction) is also presented.

It is also worth noting that the normalized efficiency Γ
is inversely proportional to the modal field area (∆x∆y)

of the waveguide. It is thus beneficial to reduce the wave-
guide core size in order to enhance the confinement and
thus the efficiency of the SHG process. However, reduc-
ing the core size excessively will eventually terminate the
confinement, causing a significant part of the modal spa-
tial profiles to be located in air (whose nonlinear tensor
is effectively 0) and a lower overlap [13, 20].

3. AlGaAs/GaAs nanowaveguides

3.1. Device design

AlGaAs is an ideal semiconductor for nonlinear ap-
plications, offering both a high second-order nonlinear
coefficient, χ(2) = 2d12 = 180 pm/V, as well as a large
third-order nonlinearity, n2 = 1.5 × 10−17 m2/W. Its
(linear) refractive index can also be easily modified by
changing the temperature or the aluminum fraction in
the AlxGa1−xAs layers; see Fig. 2b [21, 22]. Moreover,
the AlGaAs/GaAs structure proposed here is character-
ized by a mature fabrication technology, a broad infrared
transparence, and allows integration with existing laser
structures. The large second-order nonlinear tensor, re-
sponsible for the overall strength of the SHG process, as
seen from Eqs. (4) and (7), gives rise to efficient paramet-
ric wavelength conversion [11, 23]. The established fabri-
cation technique allows for low loss ridge waveguides with
smooth sidewalls and with sub-100 nm features. Detailed
information on the AlGaAs nanowaveguides fabrication
process can be found in Ref. [24].

Figure 2c shows the wafer structure used for the
AlGaAs/GaAs nanowaveguides design. The material
refractive indices were modeled according to Ref. [21],



728 K.A. Rutkowska et al.

with suitable modifications (not applied when consider-
ing temperature dependence, as one shown in Fig. 7b)
to account for absorption near the bandgap [22]. The
specific compositions and thicknesses of the AlGaAs lay-
ers have been determined by requiring a strong optical
confinement (obtained as a result of the high refractive
index contrast between the cladding and the core layers).
Moreover, by carefully choosing the aluminum content in
the core layer, the bandgap of the structure can be made
larger than the half-wavelength energy (see Fig. 2a),
thereby minimizing any possible two-photon transitions
(let us note that in general, nonlinear absorption, includ-
ing two-photon absorption, is destructive and lowers the
efficiency of the desired nonlinear effect). Moreover, the
thickness of each layer has been determined by using 1D
modal semi-vectorial analysis and optimized in order to:
(i) support single mode operation in the slab structure in
the spectral range of interest (i.e. 1500–1600 nm for FF);
(ii) minimize the evanescent field of the modes in the
substrate region. The thickness of the core was also cho-
sen in such a way that a fundamental mode was roughly
circular in shape (for w ≥ 400 nm), an important re-
quirement for coupling light into the device as most free
space laser beams have a similar shape. Subsequently,
the full-vectorial modal simulations, performed using the
finite element method, allowed for the control over the
remaining geometrical parameters, including the etching
depth (D) and the width (w) of the designed nanowave-
guides. The discretization mesh applied in the numerical
algorithm has been chosen in such a way that the propa-
gation constants were affected by a relative error smaller
than 0.05%, which is well below fabrication tolerances.
The simulations have allowed us to determine that a min-
imum etching depth of 1.5 µm is required (see waveguide
cross-section presented in Fig. 2d) to prevent light leak-
age into the substrate. The effective refractive indices
of the propagating modes and the spatial distribution
of all the components of the electric and magnetic fields
have been also determined through these simulations (for
each waveguide width). An analysis was then performed
to find possible phase matching frequencies for SHG [re-
lating the propagation constants of FF and SH in such a
way that ∆β = βFF1 + βFF2 − βSH = 0 (which is simply
∆β = 2βFF − βSH = 0 for type-I SHG)].

Moreover, it is worth to note that these photonic nano-
waveguides can also be exploited for third-order nonlin-
ear applications. This has already been shown in similar
structures (as those presented in Fig. 2) where energetic
requirements for nonlinear interactions were lowered [19].

Emphasis in our design was also placed to maximize
the confinement and to engineer the dispersion rela-
tion [25], which is dominated by the geometric struc-
ture of the proposed nanowaveguides. Figure 3 shows
the tunability of the dispersion relation for the funda-
mental TE00 mode as a function of the nanowaveguide
width (black curves). In the same figure, the dispersion
characteristics for the TM00 mode are also shown for
comparison (gray curves). As one can see, the specific

Fig. 3. Dispersion coefficient β2 = d2β/dω2 of the
AlGaAs nanowaveguide as a function of the wavelength
for different core widths w, calculated for the TE00

(black curves) and the TM00 (gray curves) modes, re-
spectively.

geometry and state of polarization significantly influence
the total device dispersion. For the horizontally polar-
ized first-order mode (TE00), the waveguide dispersion
(resulting from the strong field confinement) becomes in-
creasingly important as the width of the nanowaveguide
is decreased and the resultant total dispersion can be in-
verted (with respect to the normal material dispersion
at 1550 nm) and become strongly anomalous. It occurs
for core widths smaller than 650 nm, at which the zero-
-dispersion wavelength is ≈ 1550 nm. For the narrower
structures the negative dispersion can reach significant
values as low as −4 ps2/m (for w = 300 nm), which is
thousands of times lower than that of the typical silica
fiber at 1550 nm [1]. However, a further decrease in the
nanowaveguide width is not desirable, as it leads to rapid
variations of the dispersion coefficient around 1550 nm
(e.g. for w = 300 nm) or to very high normal dispersion
(β2 ≈ 20 ps2/m at 1550 nm for w = 250 nm).

Of particular importance is the anomalous dispersion
regime (i.e. β2 < 0), which can be obtained in the nano-
waveguide structures due to their specific geometries.
This allows the formation of temporal solitons that are
generated through a balance between the anomalous dis-
persion and the Kerr nonlinear effect. The latter is typ-
ically inaccessible in bulk semiconductor structures or
large waveguides since the material dispersion is normal
and dominates. It is worth noting that the dispersion
does remain normal and close to the material dispersion
in the case of the vertically polarized mode (TM00), and
it does not significantly change with a variation of the
core width.

3.2. Phase-matching condition for SHG

Based on our numerical simulations, we have found
that it is possible to fulfill the modal phase-matching
(MPM) condition for the fundamental wavelength in the
range of 1.5–2 µm if nanowaveguides with widths of
0.3–1 µm are used. Moreover, in addition to varying the
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waveguide core-size and device length, the efficiency of
the nonlinear process can be controlled by several addi-
tional factors such as temperature. As discussed above,
the orientation of the semiconductor wafer used for the
samples plays a significant role in determining the various
types of SHG processes occurring.

The effective refractive indices for the particular modes
of the FF (for λ = 1550 nm, which is the central wave-
length in the spectral range of interest) and the second
harmonic (λ = 775 nm) as a function of the nanowave-
guide width are shown in Fig. 4a. This dispersion di-
agram allows us to determine the MPM conditions for
SHG (please note that only the fundamental modes,
which are also the first-order modes, i.e. TE00 and TM00,
at FF are considered). A type-I process corresponds to
intersection points of the dispersion curves of the funda-
mental (black curves) and of the second harmonic fre-
quencies (gray curves), defining the special conditions at
which the effective refractive indices of the FF and SH
are equal (nFF = nSH). On the other hand, for type-II
SHG, the MPM condition is satisfied when the effective
refractive index of the SH is equal to the arithmetic mean
of the indices (represented by the dotted black curve in
Fig. 4a) for the orthogonally polarized modes at the FF
[i.e. nSH = (nFF1 + nFF2)/2].

Fig. 4. Effective refractive indices obtained for the fun-
damental (first-order) modes of the FF (at 1550 nm
— black curves) and different (first- and higher-order)
modes of the SH (a). The circled areas correspond to
phase-matched conditions (for type-II SHG) at which
the nonlinear interaction (overlap) is particularly signif-
icant. The dispersion diagram with higher order modes
for a waveguide width of 600 nm is shown in part (b).
A possible mode combination supporting modal-phase
matching for SHG is indicated.

It is important to note that phase matching is a nec-
essary but not sufficient condition for the generation of
efficient SH signal. Indeed, not all the possible phase
matched modal combinations shown in Fig. 4a are suit-
able for the SHG. Additionally, the involved modes must
have a significant nonlinear modal overlap. The latter de-
pends strictly on: (i) the form of the second-order nonlin-
ear susceptibility tensor χ(2) [whose elements are deter-
mined by the symmetry properties of the optical medium
and can be calculated for a fixed geometry (i.e. for fixed
propagation and polarization directions)]; (ii) the spa-
tial geometrical overlap between the particular compo-
nents of the electric field of the interacting modes [1],
i.e. Eq. (7).

To specifically show this result, let us focus our at-
tention on a waveguide width of 600 nm. It has been
confirmed that the lower-order mode supporting efficient
SHG in this structure (in the spectral range of inter-
est) is the x-polarized third-order mode (TE20). We can
thus obtain a type-II MPM condition at the fundamental
wavelength of 1527.15 nm (corresponding to 763.575 nm
at the SH), as can be observed from Fig. 5a (where a
type-I interaction is also presented but will be shown to
be forbidden due to a vanishing overlap).

Fig. 5. Modal dispersion of the fundamental frequency
(FF) modes and the third-order mode at the sec-
ond harmonic (SH) for a 600 nm wide photonic
nanowire, showing a type-II phase-matching wavelength
at 1527.15 nm (a). The spatial distributions of the nor-
malized electric field (E ·E∗)1/2 for the modes involved
in this interaction (as predicted in Fig. 5b) are shown
in part (b).

While the overlap factor is given by 6 different over-
lap contributions [please refer to Eq. (7)], the dominant
factor for the modes of interest (with the spatial profiles
shown in Fig. 5b) is given by E∗

FF1xE∗
FF2yESHx, which

represents all major components of the involved fields. It
can be easily proven that for the particular orientation
of the waveguides in the AlGaAs crystallographic system
analyzed here, a type-I interaction has no net efficiency
for the modes under study. The main contribution to the
overlap factor for this interaction (i.e. when FF1 =FF2=FF

for x, y, z) can be written as
∫ ∫

WG

E∗
FFxE∗

FFyESHx dxdy

=
∫

D

[∫ w/2

−w/2

E∗
FFxE∗

FFyESHx dx

]
dy

=
∫

D

[ ∫ 0

−w/2

E∗
FFxE∗

FFyESHx dx

+
∫ w/2

0

E∗
FFxE∗

FFyESHx dx

]
dy

=
∫

D

[ ∫ w/2

0

E∗
FFx(−x)E∗

FFy(−x)ESHx(−x)dx

+
∫ w/2

0

E∗
FFx(x)E∗

FFy(x)ESHx(x)dx

]
dy
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=
∫

D

[
−

∫ w/2

0

E∗
FFx(x)E∗

FFy(x)ESHx(x)dx

+
∫ w/2

0

E∗
FFx(x)E∗

FFy(x)ESHx(x)dx

]
dy = 0 , (9)

which is zero due to the mixing of two symmetric
(with respect to x) [i.e. ESHx(−x) = ESHx(x) and
EFFx/y(−x) = EFFx/y(x)] and one antisymmetric [i.e.
EFFy/x(−x) = −EFFy/x(x)] components of the modal
fields in the integral.

This implies that efficient type-I interaction is forbid-
den for the modes considered in the waveguide geometry
presented in Fig. 5b; as a result of the specific form of
the nonlinear susceptibility tensor. Type-I SHG could be
possible if the waveguides are etched along the crystallo-
graphic axis. For such an orientation, the nonlinear inter-
action overlap is proportional to

∫
EFFiESHjEFFk dxdy

for i 6= j 6= k, allowing thus for an efficient nonlin-
ear wavelength conversion taking place for the interac-
tion resulting in the modes with the orthogonal polar-
ization (with the preference given to TMFF→ TESH in-
teractions). Please note that by assuming the first-order
modes at the FF, only the odd-order (with respect to
x-axis) SH modes (i.e. with even subscript x in TExy)
are suitable due to symmetry considerations (see table in
Fig. 6d).

Fig. 6. Spatial distributions of the electric field com-
ponents for first-order (i.e. fundamental) TE00 and
TM00 modes at the fundamental frequency (for λ =
1527.15 nm) (a)–(b) and for the horizontally-polarized
third-order mode at the SH (c). The table shown in part
(d) is useful while performing symmetry considerations
in order to find the non-vanishing overlap integrals.

Similar considerations can be performed for different
combinations of the FF and SH modes, allowing one to
determine all non-vanishing nonlinear interactions. A ta-
ble analyzing the symmetry (with respect to the vertical
axis passing through the center of the core) of the spa-
tial profiles of the electric fields for different modes (of
odd- and even-order) is shown in Fig. 6d. In particu-
lar, the spatial distributions for all the components of
the transverse modal electric field for a type-II inter-
action considered here, i.e. TMFF

00 + TEFF
00 → TESH

20 (in
each case normalized to the maximum value of the ma-
jor component), are shown in Fig. 6a–c. In this case, for
a device length of 1 mm (typically on-chip lengths are on

the order of a few millimeters at most), the acceptance
bandwidth was numerically found [in accordance with
Eq. (4a)] to take a value of 0.9 nm. Moreover, the max-
imum normalized efficiency was estimated to be approx-
imately 950%/W/cm2. It is comparable to the results
obtained for QPM and other MPM (e.g. “M-shaped”)
waveguiding devices [8], while avoiding complicated fab-
rication procedures. However, the normalized efficiency
is less than what is found in artificially induced bire-
fringence structures, for which (theoretical) conversion
efficiencies as high as 20 000%/W/cm2 have been re-
ported [11]. The latter is primarily a result of matching
the first-order modes at both fundamental and second
harmonic frequencies. Nevertheless, our device still pro-
vides an appreciable efficiency while not requiring a com-
plex oxidation process, thus lowering fabrication costs
and providing a higher order of integrability with exist-
ing photonic components.

Fig. 7. Phase matching wavelength as a function of the
waveguide width (a) and temperature (b).

The phase-matching relation for the type-II interac-
tion considered above has also been studied for differ-
ent waveguide widths (Fig. 7a) and varying temperature
(Fig. 7b). Simulations have demonstrated that the phase-
-matching wavelength can be easily tuned by: (i) 1.13 nm
per 1 nm of waveguide width variation (at room temper-
ature) and (ii) 0.32 nm for each 1 ◦C (for a waveguide
width of 600 nm), respectively.

4. Conclusions

In conclusion, a compact AlGaAs frequency converter
based on modal-phase-matched second harmonic gener-
ation has been designed. It has been shown that the
phase-matching condition can be effectively tuned either
by varying the temperature or by changing the waveguide
width. It is important to note that the proposed photonic
structure can be achieved in practice by using low-cost
and mature fabrication techniques [24]. Contrarily to
other phase-matching schemes typically applied in wave-
guide structures, our proposed device does not require
selective oxidization, multiple etching or complex wafer
bonding. Moreover, a relatively high efficiency for SHG is
predicted, allowing our device to be used in diverse ap-
plications, including the realization of coherent sources
in otherwise unattainable spectral regions [14], and all-
-optical signal processing [12]. Experimental results on
modal phase-matched SHG in AlGaAs nanowaveguides,
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achieved using CW light source operating at the telecom
wavelengths, have been reported in Ref. [26].
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