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Coupled Waves in Two-Phase Periodic Planar Multilayers
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In the paper a consequently dynamic model approach to the magnetoelectric coupling is proposed. As
opposed to the static case the approach includes both the elastic equation of motion and the full set of the
Maxwell equations for effective composite medium. The analytical treatment is performed from two layers of ∞m

symmetry and results in closed relations for propagation characteristics of coupled elasto-electrodynamic waves
for millimeter-length range.
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1. Introduction

Multiferroic materials with coexistence of at least two
ferroic orders (ferroelectric, ferromagnetic, or ferroelas-
tic) have drawn increasing interest due to their potential
for applications as multifunctional devices. In multifer-
roic materials, the coupling interaction between the dif-
ferent order parameters could produce new effects, such
as magnetoelectric (ME) effect. The magnetoelectric re-
sponse is the appearance of an electric polarization P
upon applying a magnetic field H (i.e., the direct ME ef-
fect, designated as MEH effect: P = αH) and/or the ap-
pearance of a magnetization M upon applying an electric
field E (i.e., the converse ME effect, or MEE : M = αE).

Magnetoelectricity has been observed as an intrinsic
effect in some natural material systems at low temper-
ature, which have been under intensive study recently,
motivated by potential applications in information stor-
age, spintronics, and multiple-state memories. Although
over ten different compound families have been widely
investigated as multiferroic ME materials, a high inher-
ent coupling between multiferroic order parameters (es-
pecially above room temperature) has not yet been found
in a single-phase compound, which hinders their applica-
tions.

Alternatively and with greater design flexibility, multi-
ferroic ME composites made by combining piezoelectric
and magnetic substances together have drawn significant
interest in recent years due to their multifunctionality, in
which the coupling interaction between piezoelectric and
magnetic substances could produce a large ME response
(e.g., several orders of magnitude higher than that in
those single-phase ME materials so far available) at room
temperature. These ME composites provide opportuni-
ties for potential applications as multifunctional devices
such as magnetoelectric transducers, miniaturized mm
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and µm EM waves antennas, radomes, actuators, and
sensors.

The ME effect in composite materials is known as a
product tensor property, which results from the cross in-
teraction between different orderings of the two phases
in the composite. Neither the piezoelectric nor magnetic
phase has the ME effect, but composites of these two
phases have remarkable ME effect. Thus the ME effect
is a result of the product of the magnetostrictive effect
(magnetic/mechanical effect) in the magnetic phase and
the piezoelectric effect (mechanical/electrical effect) in
the piezoelectric one, namely,

MEH effect =
magnetic

mechanical
× mechanical

electric
,

MEEeffect =
electric

mechanical
× mechanical

magnetic
.

This is a coupled electrical and magnetic phenomenon
via elastic interaction. That is, for the MEH effect, when
a magnetic field is applied to a composite, the magnetic
phase changes its shape magnetostrictively. The strain
is then passed along to the piezoelectric phase, result-
ing in an electric polarization. Thus, the ME effect in
composites is extrinsic, depending on the composite mi-
crostructure and coupling interaction across magnetic-
-piezoelectric interfaces [1–3].

Thus, a new property (i.e., nonzero ME coefficient) ap-
pears in the composite consisting of magnetic and piezo-
electric phases, since neither constituent phase is magne-
toelectric. This new ME product response is due to elas-
tic coupling between the two constituent phases. High
piezomagnetic and piezoelectric coefficients and strong
coupling favor a large ME coefficient.

Antenna miniaturisation has received significant atten-
tion in recent years because of demands for miniaturisa-
tion is more obvious for lower frequency bands where
wavelength is larger. At low frequencies, such as HF and
UHF, a standard half-wavelength dipole is about a few
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meters long, which is prohibitively large. There are sev-
eral approaches to antenna miniaturisation, which can
be classified into three categories. The first is to use ca-
pacitive or inductive loadings, and/or meandered lines
to obtain allow-wave resonance, but increased second is
to reduce the wavelength of the structure using dielec-
tric materials, but is prone to surface-wave excitations
and the corresponding losses of efficiency. The third ap-
proach is to use engineered ME materials for antenna
miniaturisation [1].

In such slow-wave structures, the permeability of the
material also contributes to the miniaturisation factor
n =

√
µrεr, and therefore smaller εr are required to

achieve the same miniaturisation compared with pure di-
electric loading. Another aim is to achieve µr = εr. In
this case, the characteristic impedance of the medium is
equal to that of the free-space. As a result, no reflections
take place between the substrate of the antenna and sur-
rounding free space, thereby reducing the energy trapped
in the substrate.

The foregoing reasons underscore the importance of
possibly thorough understanding of mechanisms which
can be effectively used for manipulating the effective ma-
terials parameters of ME multilayer. Some recent pub-
lications seem to indicate that an especially strong ME
coupling can be produced in some phase transition criti-
cal regime (e.g. [4]).

In the paper, a simple analytical way to describe the
elastically mediated magnetoelectric coupling in laminar
two-phase composites is outlined. The main purpose of
the analysis presented is to highlight the mechanism of
the coupling as produced by the product effect on con-
sequently dynamical footing. Both phases are modeled
by alternately situated piezoelectric and piezomagnetic
layers (Fig. 1). The resulting formula is instructive for
clearly illustrating the essence of that kind of ME cou-
pling in a possibly simple variety. The effect in consider-
ation, can be regarded as useful basis for modeling effec-
tive electrodynamics (electric permittivity and magnetic
permeability) and coupled parameters in ME planar com-
posites.

The effect in consideration is known to be of particular
interest for synthesis of various microwaves device such
as filters, antenna, supports, radomes, frequency selective
systems, sensors, etc.

2. Description of the approach

Each electric and magnetic layer of the planar com-
posite in consideration provides a formal contribution to
current sources called “polarization current” given by

J = jωεDθp(z) ,

Jm = jωµBθm(z) = M , (1)

with θp(z) and θm(z) denoting z cross-sections of mate-
rial supports for the “currents” given in Eq. (1) electric
and magnetic layers, respectively.

Fig. 1. The multiferroic superlattice composed of al-
ternating ferroelectric and ferromagnetic layers.

For a monochromatic EM wave the full rotational part
of the Maxwell equations can then be written in the form

k ×H + ωD = ωδεE,

k ×E + ωB = ωδµH. (2)

Effective constitutive relations for the superlattice (taken
as a whole) are postulated in the following general form:

T e = CtSe − etEe − qtHe,

De = etTSe+εtEe+αtHe,

Be = qtTSe+αtTEe+µtHe, (3)

where superscripts e and t mean for the “effective” and
“total” respectively, where α is the postulated magne-
toelectric coefficient tensor and γT is the transposed γ.
The magnetoelectric coupling is a new property of the
composite. Of these constitutive coefficient tensors, C
is fourth-rank tensors; e (et) and q (qt) are three-rank
tensors; and ε and µ and α (αt) are second rank tensors.
If we obtain some formula for α in such materials, it will
prove the existence of the EM coupling in the considera-
tion. The elastic equations of motion of the superlattice
can then be written as

ρ
∂2ui

∂t2
− Tij,j = 0 . (4)

Taking into account the Maxwell equation with “polar-
ization currents”, we can write

(k ×H)i = ω

(
εikEk + ejki

∂uk

∂xj

)
θp , (5)

(k ×E)i = ω

(
µikHk + qijk

∂uk

∂xj

)
θm , (6)

with ε(z) = ε0 − δεθp(z), µ(z) = µ0 − δµθm(z) From the
elastic equation of motion and taking into account (3–6),
we obtain

ρ
∂2uj

∂t2
− Cijkl

∂2uk

∂xj∂xl
+

∂(ekjl(z)El)
∂xj

+
∂(qijlH lk)

∂xj
= 0 . (7)

By using the Fourier transformation, we have for these
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fields

uj =
∫

ũJ e j (ωt−qr) dq ,

(E, H) =
∫ (

Ẽ, H̃
)
(k)e j (ωt−kr) dk

and for material coefficients

γ = (ρ,C, e, q, ε, µ) ,

γ(z) =
∑

K

γ̃(K)e− jKr,

where q is the elastic wave vector, k is the electromag-
netic wave vector, and K = Kẑ is the reciprocal vector
of the periodic multilayer. Following the way developed
in [5] for piezoelectric superlayers the formula (7) is ex-
pressed as∫

(−ρωδjk + cijklqiql)ũk e− jqr dq

= − j
∑

K

(κ)i

[
ẽljn(κ)Ẽn + q̃iljn(κ)H̃n

]
, (8)

where κ = K + k.
In order for the two sides of (8) to be equal, q must

satisfy q = κ for one of the K vectors.
For the Bloch–Fourier transformed displacements we

can read

ũk = − jGjk(κ)
(
q̃ljnH̃nθ̃m + ẽljnH̃nθ̃p

)
(9)

with
Gjk(κ) =

(−ρω2δjk + cijklκiκl

)−1 (10)

corresponding to the Fourier transformed Green function,
and

∂uk

∂xj
= e− j (k+K)rκjG̃ij(κ)

(
q̃ljmH̃mθ̃m + ẽljnẼnθ̃p

)
.

(11)
Then

(−ρω2δjk + cijklκiκl

)
ũk(κ)

= jκj

[
ẽljn(κ)Ẽn + q̃iljn(κ)H̃n

]
. (12)

The polarization support is known to rather strongly fall
towards consecutive boundaries. This is produced by a
size effect of homogeneous regions, which is familiar for
both ferroelectrics and ferromagnetic monodomain layers
(see e.g. [6]).

Thus, it takes rather trapezoidal than a rectangular
form. For brevity, we assume here that z cross-section for
both (electric and magnetic) layers are identical through
the structure having an equilateral trapezoid form, de-
picted in Fig. 2.

Then the Fourier transform of the assumed trapezoid
shape of each layer cross-section takes the form

Wtrop(κ) = Trap(κ)e− j κd
2 = Qp(κ) = Qm(κ), (13)

where

Fig. 2. The model shape of z cross-section for one-layer
polarization and magnetization.

Trap(κ) =
4 sin

(
d0κ
2

)

κd0

sin
(

κ(d−d0)
2

)

κ
. (14)

For the effective fields in all the structure, we can write

De
m = et

mkl

∂uk

∂xl
+ εmlE

e
l = εt

mlE
e
l , (15)

Be
i = qt

mkl

∂uk

∂xl
+ µmlH

e
l = µt

mlH
e
l , (16)

∂ũk

∂xl
= e− jκρκiκlG̃jk(κ)

(
ẽijnEt

n + q̃ijnHt
n

)
, (17)

Dt
m = eT

mklje
jkρ+jKzκlG̃jk

(
q̃kjnHt

n + ẽkjnEt
n

)

+ εmnEn . (18)

We then obtain

εe
ik = εik + eT

ikljκjG̃ij(κ)ẽlkij e j (kρ+Kz) (19)

with ρ = (x, y).

Be
i = qT

mklje
jkρ+jKzκlG̃jk(q̃kjnHn + ẽkjnEk)

+µmnHn , (20)

as well as
αmn = eijnκlκiGjk(κ)q̃ijnθm(κ)θp(κ) . (21)

Substituting (17) into (15) and (16), we get

Bi = µik(κ)H̃e
k,

Di = εik(κ)Ẽe
k, (22)

where
µt

in(κ) = µS
in + q̃iklκlG̃jk(κ)κpq̃pjnθm(κ) , (23)

εt
ik = εS

ik + ẽiklκlG̃jk(κ)κpẽpjnθp(κ) , (24)

together with (21), which provides the effective magne-
toelectric dynamic coupling coefficient.

In the formulae above the Einstein summation conven-
tion is applied.

3. Concluding remarks

The resulting formulae are expressed in the simple an-
alytical closed form which clearly illustrates the mecha-
nism of the dynamic magnetoelectric coupling, as medi-
ated by the elastic strain wave. It is instructive to note
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that all the far field interaction is effectively described
by the nonlocal elastic Green function, which effectively
extends over the entire composite sample.

The three principal effective module tensors, i.e., the
effective elastic stiffness Ct, the effective dielectric per-
mittivity tensor εt, and the effective magnetic perme-
ability µt, all contain the coupled magnetic-electrical-
-mechanical effect.

The effective dielectric tensor εt, in (24), contains also
the piezomagnetic effect. If the piezomagnetic effect
is ignored, the formula (24) becomes the known result
for piezoelectric composites. The effective piezomagnetic
tensor qt is similar to the effective piezoelectric tensor ee.
The behavior of qt for the piezomagnetic composites is
similar to that of et for the piezoelectric composites.

Equation (21) for the effective magnetoelectric coeffi-
cient tensor α expressing the piezoelectric-piezomagnetic
coupling is an important result. Similarly to the static
case investigated e.g. by Nan et al. [1–3], we see that this
is also the product property of piezoelectric and piezo-
magnetic effects this time via the dynamic elastic cou-
pling. The composite, indeed, has a nonzero dynamic
magnetoelectric effect, though such effect is absent in the
two constituent phases.

It is of importance to notice that apart from the
strain mediated coupling mechanism, there are also an-

other mechanisms responsible for magnetoelectric cou-
pling. Especially important is the interface charge cou-
pling which appears within the boundary of particular
layers, being a “depletion of polarization” as shown in
Fig. 2. It has been shown, however, [7–9], that this
effect is the main ME coupling mechanism only when
the composite film thickness is below certain transition
thickness dtr while the strain-mediated coupling domi-
nate above dtr.
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