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We consider the Hamiltonian of a three-electron quantum dot composed of parabolic confinement plus the
Coulomb terms. Instead of using the Jacobi coordinates, we apply a unitary transformation to this system. To
avoid the complexity, the Taylor expansion of the effective potential is introduced into the problem and thereby a
solution is found for the eigenvalues of the corresponding three-body Schrödinger equation in terms of the Wigner
parameter.
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1. Introduction

A large class of three-body problems appear in various
branches of physics either in classical or quantum an-
nals from moon–earth–sun system [1] to the helium-like
atoms [2–7]. On the other hand, the study of a few body
system might lead to a better and deeper understand-
ing of a more testable many-body problem. One of the
attractive three-body problems is the artificially fabri-
cated atomic system or the so-called quantum dot which
shows interesting effects in a strong magnetic field [8, 9].
Negatively (X−) and positively (X+) charged excitons,
also called trions in the jargon, have been the subject
of intense both theoretical and experimental studies in
the last years [10–12]. Studies of discrete energy levels
for three- and four-electron dots represent a particular
interest because well-known model-independent methods
of the Faddeev equations and the HF can be applied for
the description of these systems. Just like many other
branches of physics, again the choice of the potential
plays a crucial role. The three-electron quantum dots
in different potentials including the harmonic, Coulomb
and Gaussian terms were studied in Refs. [13–22] using
different methodologies. In the present work, we consider
parabolic and Coulomb terms but present a relatively dif-
ferent mathematical way to treat the problem.

2. Unitary transformation and numerical
calculation

Here, for the three-electron quantum dot, we consider
the potential a combination of parabolic confinement and
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Coulomb terms. If the confinement in the z-direction is
assumed to be much stronger than the one in the xy-
-plane, the quantum dot is treated as a two-dimensional
one and the corresponding Hamiltonian therefore reads

H =
3∑

i=1
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κ|ri − rj | , (1)

where κ represents the relative dielectric constant of a
semiconductor and ri denotes the position vector in the
xy-plane. Instead of using the Jacobi coordinates, we
apply a unitary transformation to the three-body elec-
tron quantum dot. To be more precise, we apply a uni-
tary transformation of the following form [23] between
the original position vectors ri and the new ones, i.e. xi,
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From the inverse transformation we obtain
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where X = 1
3

∑3
i=1 xi is the center of mass (cm) in the

new coordinates and coincides with the (cm) in the orig-
inal coordinates R = 1

3

∑3
i=1 ri. We do not use the Ja-
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cobi transformation, which separates the (cm) coordinate
from the relative coordinate and breaks the symmetry
between the new coordinates. Instead, the applied trans-
formation retains the symmetry and the (cm) is not taken
in the form of an independent variable. Because any lin-
ear unitary transformation leaves the kinetic energy and
the external harmonic potential invariant, the Hamilto-
nian in the new coordinates reads [23]
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(5)
While being still exact, Eq. (5) is not completely decou-
pled because X contains all coordinates. In our approx-
imation, i.e. in the Wigner limit, where the uncertainty
of the (cm) vector X is small compared with the mean
electron–electron distance, we can neglect X in the de-
nominator of the interaction term in Eq. (5). By omitting
of the center of mass term, the Hamiltonian

H =
3∑

i=1

Hi (6)

decouples into a sum of three independent Hamiltonians
of the form
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Before proceeding further, it should be emphasized that
the error due to neglecting the center of mass term could
be shown to be very small. An interesting methodology
to prove the statement has been given in Ref. [23]. Al-
though the averaged e–e potential strongly deviates from
the R = 0 curve for small x, the deviation of the relative
part is very small. This comes from the fact that the
probability density is small for that x, where the aver-
aged e–e potential is changed by averaging. The maxi-
mum shift in the pair energies due to averaging is shown
to be only about 1% [23].

The total wave function consists of both spatial and
spins parts, and must be totally antisymmetric, i.e. must
be

Ψn1,n2,n3,m1,m2,m3(x1, x2, x3, S)

=
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with the spin part being mixed symmetric, or
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with the spin part being symmetric. An explicit form
of the spin function can be written by assuming that
the magnetic quantum number M of the spin function
takes the highest value, i.e. 1/2 for the doublet state
and 3/2 for the quartet state, respectively. Therefore,
as the Hamiltonian is brought into the form of a sum of
three single-particle Hamiltonians, we consider the cor-
responding single-particle Schrödinger equation

HiQni,mi
(xi) = E(ni, |mi|)Qni,mi

(xi). (8)

In order to solve the above Schrödinger equation, we
consider the transformation in polar coordinates xi =
(xi, ϕ):
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, j =
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which in two dimensions reduces Eq. (8) to the form
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Φni,mi(xi) = 0 , (10)

where mi = 0,±1,±2,±3, . . . Changing the independent

variable according to ρi =
√
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~ xi, the above equation

gives

d2Φni,mi(ρi)
dρ2

i

−
[
ρ2

i +
m2

i − 1
4

ρ2
i

+
2e2

√
3κ~ω0

√
~

m∗
eω0

ρi

]

×Φni,mi(ρi) = − 2
~ω0

E(ni, |mi|)Φni,mi(ρi) (11)

after being divided to m∗
eω0
~ . Now, introducing
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, being the Wigner parameter which ex-

presses the relative strength of the Coulomb repulsion
between two electrons separated by l0 and twice the zero-
-point kinetic energy of an electron moving in a harmonic
confinement [24, 25]. Thus
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In the above equation, the effective potential is consid-
ered as

Veff,mi(ρi) = ρ2
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, (13)

whose derivative’s root is denoted by ρ0,mi in the rest of
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the manuscript. On the other hand, the Taylor expan-
sion of Veff,mi

(ρi) now gives
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Substitution of Eq. (14) into Eq. (11) gives
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On the other hand, the well-known one-dimensional har-
monic oscillator Schrödinger equation is
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which possesses the energy eigenvalues
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If we now use the relation ε(ni, |mi|) = E(ni,|mi|)
~ω0/2 , the

relative motion energy of the system in units of ~ω0/2 is
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where mi is a magnetic quantum number corresponding
to the relative motion term in the Hamiltonian. For the
energy of the system, we now have
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A comparison is made for the quantum states
(
mtot = 0,

Stot = 3
2

)
and

(
mtot = 1, Stot = 1

2

)
for various Wigner

parameters in Figs. 1 and 2. As it can be seen, when

Fig. 1. Comparison of our results with Ref. [22] for(
mtot = 0, Stot = 3

2

)
for various Wigner parameters.

Fig. 2. Comparison of our results with Ref. [22] for(
mtot = 1, Stot = 1

2

)
for various Wigner parameters.

RW = 0, it means that the Coulomb interaction is ab-
sent and the only present interaction is the harmonic one.
In other words, we are left with three harmonic oscilla-
tor equations whose solutions are both exact and known.
For large RW the consistency with the numerical data
decreases in comparison with the small values but the
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consistency is yet acceptable. The reason is that we have
ignored the higher order terms in the expansion. In such
a case, for the ground state E ∝ R

2/3
W which coincides

with the classical behavior. This is in complete agree-
ment with Ref. [22] where the energy in terms of ~ω0

is E = 3
5
3 λ

2
3 /2. Finally, we wish to emphasize that the

present approach is much easier than other common tech-
niques.

3. Conclusion

Using a quasi-analytical approach, we have calculated
the energy eigenvalues of the Schrödinger equation cor-
responding to a three-electron quantum dot. While the
Jacobi coordinates are normally used in the case of a
three-body problem, making use of a unitary transfor-
mation, which separates the Hamiltonian into the sum
of three Hamiltonians, as well as the idea of the Taylor
expansion, much of mathematical complexity has been
avoided. For the potential, we have considered parabolic
plus Coulomb terms. Two included figures for two quan-
tum states indicate an acceptable agreement with the
present results.
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