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This paper presents a method of fitting the magnetic hysteresis curves using a calculating algorithm within a
computer programme. The calculating programme uses the equations of the Jiles–Atherton model to simulate the
M(H) magnetization curve. The aim of this program is to find the values of the parameters which are part of the
Jiles–Atherton model once the regression curve for a major magnetization curve obtained experimentally is found.
The values of these parameters can be increased or decreased gradually. The parameters modification takes place
in such a way that the root mean square deviation between the points of the two graphs, also experimentally
simulated, should decrease gradually and, in the end, it should be found below the preestablished percentage value
in comparison to the previous value. The procedure for minimizing the root mean square deviation has as a result
the fact that the simulated curve represents the regression curve. The calculating programme considers a second
method of calculating the values of the parameters by using the already found regression curve. This paper also
presents the values of the Jiles–Atherton model parameters obtained by fitting the magnetization curves of several
cobalt ferrites samples, sintered at different temperatures.

PACS: 75.60.–d, 75.60.Ej

1. Introduction

This paper presents a calculating algorithm with two
complementary methods of determining the regression
curve in the case of major experimental magnetization
curves. For this purpose the equations of the Jiles–
Atherton (J–A) model [1] are used, obtaining the follow-
ing simulated magnetization curves: the Man(H) anhys-
teretic curve, the M(H) first magnetization curve with
H increasing from 0 to +Hmax and the major magnetiza-
tion curve with H in the [−Hmax, +Hmax] interval. The
major curve is given by two equations, as it will be seen
in Sect. 2, according to the way H increases or decreases
in the mentioned range. Hmax is the maximum value of
the applied magnetic field which magnetizes a ferro or
ferrimagnetic sample.

In the J–A model equations there are four parameters:
a, α, k and c. To obtain the regression curve it is nec-
essary to find the values of these parameters. Of course,
attempts have been made to find the regression curve
for a given experimental magnetization curve and to cal-
culate the coefficients of the J–A model using different
programming methods or different mathematical adjust-
ments of the used equations to simplify the achievement
of this objective [2–12]. Taking into consideration that
one of the model’s equations is a differential equation
which does not have an analytical solution, the attempts
of fitting experimental magnetization curves were based
on numerical methods. Unlike the already taken actions
[5–8], what we suggest is a calculating algorithm which
determines the values of the J–A model parameters in
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two ways. The algorithm made to obtain the regression
curve is based on repeated calculating structures which
gradually draw the simulated major magnetization curve
nearer to the experimental one. This approach is based
on a simple principle: the a, α, k, c coefficients are grad-
ually increased or decreased so that in the end the differ-
ence between the graphs should be minimum. Within the
calculating programme the initial values of these param-
eters are random. The root mean square deviation could
be considered as measure of the distance between the
simulated curve and the experimental one and is given
by the equation

S =

√∑N
i=1(Mi −Mexp,i)

2

N
, (1)

where N is the number of points on the experimental ma-
jor magnetization curve, Mi represents the value of mag-
netization calculated by the computer programme for a
field identical or very close to the experimental Hexp,i and
Mexp,i is the value of magnetization experimentally de-
termined for Hexp,i. The calculating programme achieves
a leveled variation of the magnetic field. The calculated
values of H do not exactly overlap the Hexp,i experimen-
tal values but some of them could be “as close as possi-
ble”. In other words, the terms of a subsequence of the
H values are very close to the sequence of the Hexp,i,
i = 1 . . . N experimental values. Minimizing S leads to a
hysteresis loop having approximately the same shape and
area as the experimental one, as it will be seen in Sect. 4.
The simulated curve obtained through minimizing the
root mean square deviation is called regression curve and
has the property that the sum of the squares of the dis-
tances, measured along the ordinate, from its points to
the experimental ones is minimum. Thus the distance be-

(491)



492 N.C. Pop, O.F. Caltun

tween two points on the two curves, corresponding to the
same magnetic field, is the difference of the magnetiza-
tions which appears in Eq. (1): Mi −Mexp,i. The values
of the J–A model coefficients for three cobalt ferrite sam-
ples obtained through sintering at different temperatures
will also be shown in Sect. 4.

2. The equations of the J–A model

The magnetization calculated according to the J–A
model has two components, an irreversible and a re-
versible one corresponding to the irreversible or reversible
phenomena which take place within the magnetic mate-
rial during the magnetization. The domain walls mov-
ing over the pinning sites represent irreversible displacing
and their movement between two successive pinning sites
or the rotations of the magnetic moments which lead to
the decrease of the magnetization at field inverting after
achieving the saturation represent reversible phenomena.
Thus the total magnetization is M = Mrev + Mirr.

The irreversible component of the magnetization is
given by the following differential equation:

dMirr =
Man −Mirr

kδ − α(Man −Mirr)
dH, , (2)

where Man is the anhysteretic magnetization and k is a
coefficient which appears as a factor of proportionality
between the wasted energy when a domain wall crosses a
pinning site and the variation of the sample’s magnetiza-
tion as an effect of this movement. Within this equation
also, δ = 1 if dH/dt > 0 and δ = −1 if dH/dt < 0.

The anhysteretic magnetization is the magnetiza-
tion of an ideal ferromagnet which does not have pin-
ning sites and thus, its magnetization curve does not
present hysteresis, the magnetization being made only
through the rotating mechanism of the magnetic mo-
ments. Langevin’s function specific to magnetizing para-
magnetic substances is used within the J–A model for an-
hysteretic magnetization, in which case an effective field,
He, within the sample replaces the magnetic field, H, ex-
ternal to the sample. The equation of the anhysteretic
magnetization is

Man = Ms

(
coth

He

a
− a

He

)
, (3)

where a = kBT/(µ0m) is another parameter within the
model which is obtained as a result of the fitting pro-
cess, m is the magnetic moment of a typical magnetic
domain and He =H+αM (the polycrystalline ferromag-
net is treated [1] as a canonical ensemble of interacting
magnetic domains each carrying a magnetic moment m).

Sablick nad Jiles [13] consider that Ms = mn, where
Ms is the saturation magnetization and n is the density
of magnetic domains of feromagnetic sample. Therefore
n = µ0Msa/(kBT ) and n ∼ aMs. a is a coefficient which
can be interpreted as a measure of the coupling between
the adjoining magnetic domains. The reversible compo-
nent of the magnetization is a fraction c of the difference

of the magnetization anhysteretic and the irreversible one

Mrev = c(Man −Mirr). (4)

Finally, the value of the total magnetization is given by
the following equation:

M = cMan + (1− c)Mirr. (5)

From (5) results that

dM

dH
= c

dMan

dHe

dHe

dH
+ (1− c)

dMirr

dH
(6)

and
Mirr =

m− cMan

1− c
. (7)

Substituting (7) into (2) we obtain

dMirr =
Man −M

kδ(1− c)− α(Man −M)
dH . (8)

Differentiating (3) we get

dMan

dHe
=

Ms

a

[
1−

(
coth

He

a

)2

+
(

a

He

)2
]
. (9)

But
dHe

dH
= 1 + α

dM

dH
. (10)

Substituting (8), (9) and (10) into (6) we obtain the equa-
tion

χ′ =
dM

dH
=

{
c
Ms

a

[
1−

(
coth

He

a

)2

+
(

a

He

)2
]

+(1− c)
Man −M

kδ(1− c)− α(Man−M)

}/
(1− αc) . (11)

This is the final differential equation that can be reached
using J–A model, equation which gives the dependence
between the magnetization of a magnetic sample and the
applied magnetic field.

Jiles et al. [2, 3] obtained the a, α, k, c coefficients
which appear in Eqs. (2)–(5) or (11) by calculating
some differential magnetic susceptibilities at different
points of the anhysteretic magnetization curves, major
or first magnetization. These differential susceptibilities,
χ′ (dM/dH or dMan/dH) are the derivates of the mag-
netization in relation to the H field at different points
of the magnetization curve or at different points of the
anhysteretic curve. The initial, remanent, coercive and
saturation anhysteretic differential susceptibilities will be
marked by χ′an, χ′anmax, χ′anc, χ′anm. The differential sus-
ceptibilies on the major magnetization curve correspond-
ing to the mentioned areas will also appear in these equa-
tions: χ′in, χ′max, χ′c, χ′m.

The Taylor series expansion of the anhysteretic mag-
netization in the vicinity of H = 0, M = 0, gives

Man
∼= Ms

He

3a
=

Ms

3a
(H + αM) . (12)

Substituting (5) into (12) we obtain
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Man =
Ms

3a

[
H + αcMan + α(1− c)Mirr

]
. (13)

For H = 0 we will have Man = 0. We consider that in
this zone the irreversible component of the magnetization
is null (for very small fields the domain walls perform re-
versible motions). Mirr = 0. What results from Eq. (2)
is

dMirr

dH

∣∣∣∣
H=0

∼= 0 . (14)

Taking into consideration Eqs. (5) and (14) we can write

χ′in =
dM

dH

∣∣∣∣
H=0

∼= c
dMan

dH

∣∣∣∣
H=0

. (15)

As a matter of fact, Eq. (15) presents c as the relation be-
tween the differential magnetic susceptibilities calculated
in the beginning zone of the first magnetization curve

c ∼= χ′in
χ′an

. (16)

The following two equations are presented as they were
calculated by Jiles et al. [3]:

k =
Man(Hc)

1− c

(
α +

1

χ′max − c
1−c

dMan(Hc)
dH

)
, (17)

MR = Man(MR) +
k

α
1−c + 1

χ′rem−c
dMan(MR)

dH

. (18)

MR is the remanent magnetization, Man(MR) = Man(0)
and dH/dt < 0, dMan(MR)/dH= dMan(0)/dH,
dH/dt < 0 [2, 3].

The c coefficient being known from (16), k and α, re-
spectively, can be found from (17) and (18).

Differentiating (13) in H = 0 and taking (14) into ac-
count, we have

dMan

dH

∣∣∣∣
H=0

∼= Ms

3a

(
1 + αc

dMan

dH

∣∣∣∣
H=0

)
. (19)

Equation (19) leads to

a ∼= Ms

3χ′an
+

αcMs

3
. (20)

In conclusion, if the graph of a major magnetization curve
is known, including the anhysteretic and the first mag-
netization curves, the a, α, k, c coefficients can be cal-
culated using Eqs. (16)–(18) and (20) first obtaining the
susceptibilities involved in these equations.

3. The method of fitting the experimental
hysteresis curves

The structure of the calculating programme which fits
the experimental magnetization curve has the following
calculating steps:

1) Initialization of the physical units which are the ob-
ject of the calculation;

2) Calculation of the coordinates of the simulated mag-
netization curve;

3) Calculation of the average square deviation S using
Eq. (1);

4) Gradual increasing or decreasing the a, α, k, c pa-
rameters in order to minimize S;

5) Displaying the calculated physical units including
the values of the a, α, k, c parameters, of the experimen-
tal and regression magnetization curves;

6) Recalculation of the values of the a, α, k, c param-
eters using Eqs. (16)–(18), (20) and displaying of these
values.

Detailing stage 1:
The experimental data are “read” first so that a set of

variables corresponding to the magnetic field gets the cor-
responding numerical values from a text file. Another set
of variables receive the values corresponding to the mag-
netization. Using the second set of variables the value of
the saturation magnetization Ms is determined through
interpolation. The magnetic field is gradually increased
or decreased with dH. If dHexp is the average distance
between two successive values of the measured magnetic
field intensity, in order to obtain calculated values of the
magnetic field intensity as close as possible to the exper-
imental ones, it is necessary that dH should be much
smaller than dHexp. Thus the preestablished vicinity of
a random experimental value of the Hexp,i magnetic field,
in which there is only one calculated value H of the mag-
netic field, will be V = (Hexp,i − dH/2, Hexp,i + dH/2).
If the distance between any two consecutive experimental
values of the magnetic field is constant then dH= dHexp.
In the same stage the a, α, c, k parameters will receive
random values. The maximum value of the calculated
Hmax is initialized with the maximum experimental value
of the magnetic field. Also, the initial values of the cal-
culated magnetization M and of the calculated magnetic
field H are null.

Detailing stages 2 and 3:
The calculation of the coordinates (H, M) on the sim-

ulated magnetization curve takes place as follows:
— for a given H the effective He field is calculated

using the equation He =H+αM (initially H and M are
null);

— the anhysteretic magnetization is calculated using
Eq. (3);

— the variation of the irreversible component of dMirr

magnetization is calculated using Eq. (2), where dH is
the variation step of the calculated magnetic field;

— the value of the irreversible component of the mag-
netization is found: Mirr = M ′

irr + dMirr, where M ′
irr is

the previous value of this magnetization corresponding to
the previous point on the simulated magnetization curve;

— finally, the total magnetization M , which includes
the irreversible component is calculated. Equation (5) is
used;

— after calculating M for a given H field,
the value of the field becomes H + dH on the
0→Hmax, −Hmax→+Hmax intervals and H − dH on
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the +Hmax→−Hmax interval; after this modification of
the field the sequence of operations described above starts
again. The repetition of the calculation sequence stops
after the values were included once in the intervals and
reached their extremes each time. The first interval cor-
responds to the calculation of the coordinates of the sim-
ulated first magnetization curve and the other two to-
gether correspond to the simulated major magnetization
curve.

The calculation of the average square deviation S takes
place simultaneously with the previously mentioned cal-
culations.

The calculation of S takes place as follows:
— at each repetition of the calculation sequence pre-

viously described, for each H value of the magnetic field
calculated in the variation intervals +Hmax→−Hmax

and −Hmax→+Hmax (the major magnetization curve),
it is tested if this value is in the preestablished vicinity V
of an experimental value Hexp,i, i = 1 . . . N , N being the
number of experimental data on the major experimental
magnetization curve;

— if the previous condition is fulfilled, then the value
of the calculated magnetization M(H) is memorized by a
variable of the programme, Mi, and then the next modi-
fication of the square of S takes place: S2→S2 + [Mi −
Mexp,i]2. If the condition is not fulfilled, S2 keeps its
value. Mexp,i is the measured magnetization correspond-
ing to the measured magnetic field Hexp,i. At first S = 0.

When ending these calculations, after all the coordi-
nates of the simulated magnetization curve have been
calculated, the value of S becomes (S2/N)1/2; thus the
calculation of the average square deviation is finalized
according to Eq. (1).

Stage 4 follows, which means the modification of one of
the four parameters. This modification aims at obtaining
a simulated curve closer to the experimental one, this
being possible only if, as a result of the modification, the
value of S is smaller than the previous one.

Detailing stage 4:
After modifying one of the mentioned parameters with

a fraction z of its previous value, for example increasing,
the calculation programme recalculates the coordinates
of the simulated curve M(H) and recalculates the aver-
age square deviation S. In this way, a repetition of stages
2–3 takes place. If S’s new value is smaller than the pre-
vious one, the modification of that parameter continues
increasing it again with the z fraction of its new value
(for example, at the beginning z = 50%). The repetition
of this operation takes place until the value of S becomes
bigger than the previous one. Then, that parameter, and
also S, returns to the value considered before the last
modification. After this the modification of the next pa-
rameter starts, etc. If from the very first increasing mod-
ification of one of the parameters, the decrease of S is not
possible, then there is an alternative option to have a de-
creasing modification. If this does not have as a result
the decrease of S, then the next parameter is taken into
consideration. The decreasing modification takes place

according to the same procedure as the increasing mod-
ification. Therefore, the gradual modifications of these
parameters lead to the step-by-step decrease of S. Af-
ter the successive modifications of all the parameters the
program evaluates if the difference between the last two
values of S is smaller than a certain percentage of S’s last
value. If this condition is not fulfilled, then the series of
modifications of these parameters starts again. If this
condition is fulfilled, then the z fraction decreases twice
and the succession of the parameters’ modifications re-
sumes. The decrease of z implies a finer modification of
each of the parameters thus a more precise calculation
of them. The decrease of the z fraction takes place until
z < 0.001%.

Then the computer screen displays the experimental
and the calculated magnetization curves, the a, α, k,
c coefficients, the remanent magnetization, the coercive
field and the susceptibilities mentioned in Sect. 2.

The susceptibilities mentioned in Sect. 2 are the tan-
gents to the magnetization curve at different points, and
the programme calculates them simultaneously with the
coordinates of the simulated magnetization curve.

Stage 6:
Immediately after finalizing the fitting, there is the

possibility for the user to calculate the a, α, k, c pa-
rameters using Eqs. (16)–(18), (20). By pressing a but-
ton on the interface the values of the parameters calcu-
lated in this way are displayed. These new values can be
compared to those obtained through minimizing the root
mean square deviation. Therefore, there are two com-
plementary methods of calculating the parameters of the
J–A model. The first method corresponds to the values
directly obtained through fitting and the second method
corresponds to the use of the above mentioned equations
immediately after finding the regression curve. The sec-
ond method would not be possible without finding the
regression curve because all the susceptibilities which are
part of these equations are calculated using this curve.

4. Results

The experimental data used by the application are de-
termined by a vibrating samples magnetometer (VSM).
We will further present the fitting results for three sam-
ples of CoFe2O4 obtained by coprecipitation method and
sintered for 5 h in air atmosphere at temperatures of
1050 ◦C, 1100 ◦C and 1150 ◦C. The experimental and cal-
culated values are presented in Table I. The experimen-
tal and calculated hysteresis loop (regression curve) for
sample 1 (sintered at 1050 ◦C) are presented in Fig. 1. In
Table II there are presented the values of the J–A model’s
parameters for sample 1 obtained by the two calculation
modes. We can observe that in the case of these ma-
terials the values of the a, k, α parameters determined
with the two methods are relatively close. The param-
eters used to determine the quality of the fittings were
the quality factor, ε [12], and the Pearson coefficient, r2.
The expression of the quality factor is given by equation



Jiles–Atherton Magnetic Hysteresis Parameters Identification 495

ε =
S

Ms
. (21)

It represents a percentage value of the root mean square
deviation.

Fig. 1. Regression curve for sample 1.

TABLE I

The values of the Jiles coefficients for the three samples
of CoFe2O4 obtained through mode 2 of calculation.

Sample 1 Sample 2 Sample 3
T [◦C] 1050 1100 1150

ρ [g/cm3] 4.89 4.92 5.01
Ms [A/m] 414800 424000 439600

Mrem [A/m] 174100 87600 77000
Hc [A/m] 18480 12610 7920

α 0.176 0.126 0.198
k [A/m] 18964 12755 7978

c 0.00009 0.00014 0.00023
a [A/m] 33661 36610 42860
r2 [%] 99.98 99.96 99.94
ε [%] 1 0.78 0.83

The r2 coefficient is given by the equation

r2 = 1−
∑N

i=1(Mi −Mexp,i)
2

∑N
i=1

(
M exp −Mexp,i

)2 , (22)

where Mi is the calculated value of the magnetization for
the Hexp,i field and M exp is the arithmetic average of the
magnetization experimental values. As the value of r2 is
closer to 1, the regression curve is more accurate.

The values of these two quantities, presented in Table I,
show a relatively high precision of the obtained regres-
sion curves. Regarding the values obtained for the four
coefficients we can state that:

— the decrease of k with the increase of the sintering
temperature indicates a decrease of the blocking areas
density in the studied samples (in the considered tem-
perature range) and thus a reduction of the energetic
losses;

— the increase of c with the sintering temperature in-
dicates an augmentation of the reversible component of
the magnetization which can be caused by the decrease
of the blocking areas density.

TABLE II

A comparison between the values of the Jiles coeffi-
cients for sample 1 obtained through the two modes
of calculation.

a

[A/m]
k

[A/m]
α c

mode 1 33679 19083 0.178 1× 10−6

mode 2 33661 18964 0.176 9× 10−5

Considering the values for Ms and a from Table I, we
can say that in the studied temperature range, the den-
sity of the magnetic domains (n ∼ aMs) of cobalt ferrite
samples increases with the sintering temperature.

5. Conclusion

The designed software based on J–A model can be used
in fitting the experimental hysteresis loops of magnetic
materials with high accuracy. The purpose of the fit-
ting programme was the well-precise determination of
the values of the model’s coefficients for a certain ma-
terial. This purpose was achieved. Moreover, this calcu-
lating programme can also be used for fitting the mag-
netization curves of samples under mechanical stress or
under other interaction conditions and, in this way, the
dynamic of the model’s coefficients in the given situations
can be observed. These coefficients, through their phys-
ical meanings, can provide useful information regarding
the microstructure of magnetic materials and of the in-
teractions at this level.
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