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Theory of the Dielectric Susceptibility of Liquid Crystals
with Bent-Core Molecules
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Statistical theory of the dielectric susceptibility of polar liquid crystals is proposed. The molecules are
calamitic or bent-core but the permanent dipole moment is perpendicular to the molecule long axis. The ordering
of the phase is described by means of the mean-field theory based on the Maier–Saupe approach. The theory is
used to calculate the temperature dependence of the order parameters and the susceptibilities. The phase diagram
with four phases is obtained: isotropic, uniaxial nematic, uniaxial ferroelectric, and biaxial ferroelectric. Four
critical points are predicted.

PACS: 61.30.Cz, 77.84.Nh

1. Introduction

Liquid crystals are always built from anisotropic
molecules [1]. For a long time calamitic or discotic
molecules were considered as appropriate molecules for
the formation of liquid crystal phases. But it appeared
that bent-core molecules can lead to many interesting
phenomena related to polarity and chirality [2]. Phases
and phase transitions that can take place in the bent-core
systems were studied by Lubensky and Radzihovsky [3].
They showed that to completely characterize phases a
third-rank tensor order parameter is necessary in addi-
tion to the vector and the nematic (second-rank) tensor
order parameters. Twelve different liquid phases were
identified and many symmetry-allowed transitions among
them were analyzed in detail. The bent-core molecules
were studied also by means of computer simulations [4–7].

We would like to study a simple model that can capture
main features of bent-core molecules. Let us consider a
system of N molecules contained in a volume V at tem-
perature T . We assume that the potential energy of the
interactions V (R1, R2) depends only on the molecule ori-
entations R1 and R2. The orientation of a molecule is
described by the three Euler angles R = (φ, θ, ψ) or by
the three orthonormal vectors (l,m,n). The potential
energy of interactions has the form

V (R1, R2) = v0 + v1P1(l1 · l2) + v2P2(n1 · n2) , (1)

where Pj are the Legendre polynomials, the vector n
determines the long molecule axis. If v1 = 0 then
the Maier–Saupe theory is recovered, where the nematic
phase is present for v2 < 0. The v1 term breaks D∞h

symmetry and it partly describes bent-core molecules
with C2v symmetry. On the other hand, the v1 term can
be connected with the permanent electric dipole p = pl
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of a molecule because many bent-core molecules have a
transverse dipole which bisects the bend angle [7].

Our aim is to create the theory of the susceptibility
which is a tensor in the case of anisotropic phases

ε0χαβ =
∂Pα

∂Eβ
, (2)

where P and E are the polarization and the electric field,
respectively. In the first approximation, the polarization
can be written as

Pα =
Np

V
〈l̄α〉 , (3)

where p〈l̄α〉 is the average value of the dipole component
in the α-direction in the presence of the electric field.
Two different averages are involved here. The bar refers
to the potential energy of the dipole moment in the elec-
tric field and the brackets to the nematic potential. The
potential energy of the dipole p in the electric field E is
p ·E. The linear approximation is applied to resolve the
influence of the electric field

〈l̄α〉 = 〈lα(1 + βplβEβ)〉 = βp〈lαlβ〉Eβ , (4)

where 1/β = kBT . Thus the susceptibility has the form

ε0χαβ =
Np2β

V
〈lαlβ〉 . (5)

The components of the susceptibility in the nematic
phase oriented along the z axis are

ε0χxx = ε0χyy =
Np2β(2 + S)

6V
, (6)

ε0χzz =
Np2β(1− S)

3V
, (7)

where S = 〈P2(nz)〉 is the order parameter. More ad-
vanced calculations were given by Maier and Meier [8]
who extended the Onsager theory of the susceptibility to
nematic liquid crystals. If we neglect the induced polar-
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ization we can write their results as

ε0χxx = ε0χyy =
(

3χ̃ + 3
2χ̃ + 3

)
Np2β(2 + S)

6V
, (8)

ε0χzz =
3χ̃ + 3
2χ̃ + 3

Np2β(1− S)
3V

, (9)

where χ̃ is the average susceptibility of the phase.
The organization of this paper is as follows: In Sect. 2

the mean-field theory of the phase ordering is provided.
In Sect. 3 the formulae for the susceptibility are derived in
the case of the nematic and the ferroelectric phase. Sec-
tion 4 is devoted to some applications of the presented
theory. Section 5 contains a summary. Appendix A pro-
vides the definitions and main properties of the basic
functions.

2. Mean-field theory

The potential energy of molecular interactions (1) can
be rewritten in the form

V (R1, R2) = v0 + v1E
(1)
11 (R−1

2 R1) + v2E
(2)
00 (R−1

2 R1) ,

(10)
where E

(j)
µν are the basic functions defined in Ap-

pendix A [9]. The basic functions will facilitate many fu-
ture calculations. The molecular orientation in the phase
is described by the distribution function

∫
dRf(R) = 1 . (11)

The mean of any function A = A(R) can be calculated
as

〈A〉 ≡
∫

dRf(R)A(R) . (12)

The state of the system is described by a series of order
parameters 〈E(j)

µν 〉 but the most important have j = 1 or
j = 2. The internal energy of the system is

U =
N

2

∫
dR1dR2f(R1)f(R2)V (R1, R2) , (13)

whereas the entropy of the system has the form

S = −kBN

∫
dRf(R) ln(f(R)CN ) . (14)

The energy of permanent dipole moments in the electric
field E is

UE = N〈p ·E〉 . (15)

The total free energy of the system is the sum

Ftot = U + UE − TS . (16)

In the mean-field approximation a potential energy is

W (R) =
∑

j

∑
µν

w(j)
µν E(j)

µν (R) , (17)

where the unknown coefficients w
(j)
µν depend on the phase

ordering and temperature. The distribution function can
be found from the Boltzmann distribution

f(R) = exp(−βW (R))/Z , (18)

where Z is a normalization constant. The consistency
condition

W (R1) =
∫

dR2f(R2)V (R1, R2)− p(R1) ·E (19)

leads to equations

w(1)
µν = v1〈E(1)

µ1 〉δν1 − pδν1(Exδ1µ − Eyδ−1µ + Ezδ0µ) ,
(20)

w(2)
µν = v2〈E(2)

µ0 〉δν0 . (21)

It is useful to introduce the dimensionless parameters
S

(j)
µν = −βw

(j)
µν for j > 0

ln f(R) =
∑

j

∑
µν

S(j)
µν E(j)

µν (R) . (22)

S
(0)
00 is responsible for the normalization and it depends

on other S
(j)
µν with j > 0:

S
(0)
00 = − ln

( ∫
dR exp

( ∑

j>0

∑
µν

S(j)
µν E(j)

µν (R)
))

, (23)

U11
µν ≡ 〈E(1)

µ1 E
(1)
ν1 〉 − 〈E(1)

µ1 〉〈E(1)
ν1 〉 , (24)

U12
µν ≡ 〈E(1)

µ1 E
(2)
ν0 〉 − 〈E(1)

µ1 〉〈E(2)
ν0 〉 , (25)

U22
µν ≡ 〈E(2)

µ0 E
(2)
ν0 〉 − 〈E(2)

µ0 〉〈E(2)
ν0 〉 , (26)

∂S
(0)
00

∂S
(j)
µν

= −〈E(j)
µν 〉 , U jk

µν = Ukj
νµ . (27)

Now Eqs. (20), (21) have the form

S(1)
µν + βv1〈E(1)

µ1 〉δν1

= βpδν1(Exδ1µ − Eyδ−1µ + Ezδ0µ) , (28)

S(2)
µν + βv2〈E(2)

µ0 〉δν0 = 0 . (29)

The solution is orientationally stable only if the matrix[
U jk

µν +
∑

l>0

∑
ρ

βvlU
jl
µρU

kl
νρ

]
(30)

is positive definite. The isotropic phase is orientationally
stable if βv1 > −3 and βv2 > −5.

3. Dielectric susceptibility

The dielectric susceptibility tensor is defined by Eq. (2)
and we calculate the orientational polarization as

Pα = 〈lα〉Np/V. (31)

Let us note that the polarization depends on the electric
field via the distribution function. The components of
the susceptibility are

ε0χxx =
Np

V

[∑
µ

U11
1µ

∂S
(1)
µ1

∂Ex
+

∑
µ

U12
1µ

∂S
(2)
µ0

∂Ex

]
, (32)
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ε0χyy =
Np

V
(−1)

×
[∑

µ

U11
−1µ

∂S
(1)
µ1

∂Ey
+

∑
µ

U12
−1µ

∂S
(2)
µ0

∂Ey

]
, (33)

ε0χzz =
Np

V

[∑
µ

U11
0µ

∂S
(1)
µ1

∂Ez
+

∑
µ

U12
0µ

∂S
(2)
µ0

∂Ez

]
, (34)

where the derivatives are calculated from the equations

∂S
(1)
µ1

∂Ex
+ βv1

[∑
ρ

U11
µρ

∂S
(1)
ρ1

∂Ex
+

∑
ρ

U12
µρ

∂S
(2)
ρ0

∂Ex

]

= βpδ1µ , (35)

∂S
(2)
µ0

∂Ex
+ βv2

[∑
ρ

U21
µρ

∂S
(1)
ρ1

∂Ex
+

∑
ρ

U22
µρ

∂S
(2)
ρ0

∂Ex

]

= 0 , (36)

∂S
(1)
µ1

∂Ey
+ βv1

[∑
ρ

U11
µρ

∂S
(1)
ρ1

∂Ey
+

∑
ρ

U12
µρ

∂S
(2)
ρ0

∂Ey

]

= −βpδ−1µ , (37)

∂S
(2)
µ0

∂Ey
+ βv2

[∑
ρ

U21
µρ

∂S
(1)
ρ1

∂Ey
+

∑
ρ

U22
µρ

∂S
(2)
ρ0

∂Ey

]

= 0 , (38)

∂S
(1)
µ1

∂Ez
+ βv1

[∑
ρ

U11
µρ

∂S
(1)
ρ1

∂Ez
+

∑
ρ

U12
µρ

∂S
(2)
ρ0

∂Ez

]

= βpδ0µ , (39)

∂S
(2)
µ0

∂Ez
+ βv2

[∑
ρ

U21
µρ

∂S
(1)
ρ1

∂Ez
+

∑
ρ

U22
µρ

∂S
(2)
ρ0

∂Ez

]

= 0 . (40)

Now we are in the position to discuss the results for pos-
sible phases.

3.1. The isotropic phase

For the zero field all order parameters are equal to zero.
For the nonzero field the phase has the symmetry C∞v

(the symmetry of the electric field):

ε0χxx = ε0χyy = ε0χzz =
Np2β

V (3 + βv1)
. (41)

For v1 < 0 we get the Curie–Weiss law describing the
divergence of χ when we approach the Curie temperature
from above. For v1 > 0 the susceptibility is finite.

3.2. The uniaxial nematic phase

For the zero field the phase has the symmetry D∞h and
the parameter S

(2)
00 is nonzero for the phase oriented along

the z axis. The long molecule axes tend to be parallel

to the phase symmetry axis just like in typical nematics.
The nonzero order parameters are 〈E(j)

00 〉 = 〈Pj(nz)〉 for j
even. For the parallel field the phase has the symmetry
C∞v whereas for the perpendicular field the phase has
the symmetry C2v. The expressions U jj

µµ are nonzero

ε0χxx = ε0χyy =
Np2β(2 + S)

V [6 + βv1(2 + S)]
, (42)

ε0χzz =
Np2β(1− S)

V [3 + βv1(1− S)]
. (43)

Let us note that for v1 = 0 the expressions (6), (7) are re-
covered. For v1 < 0 the susceptibility χxx diverges at the
transition from the uniaxial nematic to the ferroelectric
phase.

3.3. The uniaxial ferroelectric phase

For the zero field and for the parallel field the phase
has the symmetry C∞v. The phase is oriented along
the x axis. The molecule dipoles (parallel to the short
molecule axes) on average point to the same x direc-
tion whereas the long molecule axes are distributed ran-
domly in the y–z plane. We have nonzero S

(1)
11 and

S
(2)
20 = −√3S

(2)
00 . The nonzero order parameters are:

〈E(1)
11 〉 = 〈lx〉, 〈E(2)

20 〉 = −√3〈E(2)
00 〉, 〈E(2)

02 〉, 〈E(2)
22 〉. In the

ideally ordered phase the values of the order parameters
are: 〈E(1)

11 〉 = 1, 〈E(2)
00 〉 = 1/4, 〈E(2)

02 〉 = 〈E(2)
20 〉 = −√3/4,

〈E(2)
22 〉 = 3/4. The most important nonzero elements U jk

µν

are: U11
11 , U11

00 , U11
−1,−1, U12

12 , U12
10 , U12

01 , U12
−1,−2, U22

22 , U22
20 ,

U22
00 , U22

11 , U22
−1,−1, U22

−2,−2:

ε0χxx =
Np2β

V

× U11
11 A1 − U12

12 A2 + U12
10 A3

(1 + βv1U11
11 )A1 − βv1U12

12 A2 + βv1U12
10 A3

,

(44)
where

A1 = (1 + βv2U
22
22 )(1 + βv2U

22
00 )

− (βv2U
22
02 )(βv2U

22
20 ) , (45)

A2 = (βv2U
21
21 )(1 + βv2U

22
00 )

− (βv2U
21
01 )(βv2U

22
20 ) , (46)

A3 = (βv2U
21
21 )(βv2U

22
02 )

− (βv2U
21
01 )(1 + βv2U

22
22 ) . (47)

3.4. The biaxial ferroelectric phase

For the zero field and for the parallel field the phase
has the symmetry C2v. The phase is oriented along the
x axis. The molecule dipoles on average point to the
same x direction whereas the long molecule axes are par-
allel to the z direction. We have independent nonzero
S

(1)
11 , S

(2)
20 , and S

(2)
00 . The most important order pa-

rameters are: 〈E(1)
11 〉, 〈E(2)

00 〉, 〈E(2)
02 〉, 〈E(2)

20 〉, 〈E(2)
22 〉, and
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〈E(2)
−1,−1〉. In the ideally ordered phase the values of the

order parameters are: 〈E(1)
11 〉 = 1, 〈E(2)

00 〉 = 〈E(2)
22 〉 = 1,

〈E(2)
02 〉 = 〈E(2)

20 〉 = 0. The susceptibility is described by
Eq. (44).

4. Results

In this section we carry out calculations for differ-
ent physical systems of polar molecules described by the
considered model. The phase diagram of the model is
shown in Fig. 1. Four phases are present: isotropic,
uniaxial nematic, uniaxial ferroelectric, and biaxial fer-
roelectric. Dashed half-lines in the picture denote dif-
ferent physical systems with the fixed parameters v1

and v2. Four critical points from C1 to C4 are predicted.
C1 = (−3.0,−3.3) and C2 = (−3.4,−3.8) are tricriti-
cal points where transition changes from second-order to

Fig. 1. Phase diagram of the model considered in the
paper, where v1 and v2 are the parameters of molecu-
lar interactions, 1/β = kBT . Four phases are present:
isotropic, uniaxial nematic, uniaxial ferroelectric, and
biaxial ferroelectric. Four critical points from C1 to C4

are predicted. Dashed half-lines denote different physi-
cal systems: (a) v2 = 0, (b) v2 = v1, (c) v2 = 2v1, (d)
v1 = 0, and (e) v2 = −2v1. For a given physical system
on decreasing the temperature we are moving from the
center (0, 0) to the edge of the figure.

Fig. 2. Temperature dependence of the inverse suscep-
tibility for v1 = 0 [half line (d) in Fig. 1]. On decreasing
the temperature the susceptibility splits into χzz < χxx.

first-order. C3 = (−3.0,−4.1) and C4 = (−2.5,−4.54)
are points where three phases coexist in equilibrium.

Let us start from the systems known from the previ-
ous studies [10]. For the case of v2 = 0 [half line (a) in
Fig. 1] we get the simple system with the second-order
transition from the isotropic to the uniaxial ferroelectric
phase at TC = −v1/3kB. For the case of v1 = 0 [half line
(d) in Fig. 1] the interactions are uniaxial (small dipoles)
and there is the first-order transition from the isotropic
to the uniaxial nematic phase. The temperature depen-
dence of the inverse susceptibility is presented in Fig. 2.
In all pictures, T denotes the dimensionless temperature.
T = 1 corresponds to the transition from the isotropic
to the nematic or ferroelectric phase. The susceptibili-
ties are expressed in Np2/(V ε0|v1|). On decreasing the
temperature the susceptibility splits into χzz < χxx. χxx

runs to the infinity whereas χzz remains finite. This is
typical for the uniaxial molecules with the dipole moment
perpendicular to the symmetry axis.

In the system described by half line (b) in Fig. 1 there
are the second-order transitions from the isotropic phase

Fig. 3. Temperature dependence of the order param-
eters for v1 = v2 [half line (b) in Fig. 1]. There are
the second-order transitions from the isotropic phase to
the uniaxial ferroelectric phase (T = 1) and next to the
biaxial ferroelectric phase (T = 0.81).

Fig. 4. Temperature dependence of the inverse suscep-
tibility for v1 = v2 [half line (b) in Fig. 1].
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Fig. 5. Temperature dependence of the order param-
eters for v2 = 2v1 [half line (c) in Fig. 1]. There is
the first-order transition from the isotropic phase to the
uniaxial nematic phase (T = 1) and the second-order
transition from the uniaxial nematic phase to the biax-
ial ferroelectric phase (T = 0.96).

Fig. 6. Temperature dependence of the inverse suscep-
tibility for v2 = 2v1 [half line (c) in Fig. 1].

to the uniaxial ferroelectric phase (T = 1) and next to
the biaxial ferroelectric phase (T = 0.81). The tem-
perature dependence of the order parameters and the
inverse susceptibility is presented in Figs. 3 and 4, re-
spectively. We note that the susceptibility reveals the
transition from the uniaxial ferroelectric to the biaxial
ferroelectric phase.

A very interesting situation takes place in the system
described by half line (c) in Fig. 1. The temperature
dependence of the order parameters and the inverse sus-
ceptibility is presented in Figs. 5 and 6, respectively. On
decreasing the temperature we meet the first-order tran-
sition from the isotropic to the uniaxial nematic phase
(T = 1) and the second-order transition to the biaxial
ferroelectric phase (T = 0.96). In the uniaxial nematic
phase we have χxx > χyy = χzz.

In the case of the system described by half line (e) in
Fig. 1 two phases are present: isotropic and uniaxial ne-
matic with the first-order transition between them. The
order parameter 〈E(2)

00 〉 is the most important and the
susceptibility is finite.

5. Summary

In this paper, we presented the statistical theory of
the dielectric susceptibility of polar liquid crystals. The
molecules were calamitic or bent-core with the permanent
perpendicular dipole moment. We focused on spatially
homogeneous (liquid) phases because the understanding
and classifying of those phases is a prerequisite to study
of more ordered phases, which in addition break transla-
tional symmetry.

TABLE
Liquid phases of banana-shaped molecules, their sym-
metries in the Schoenflies notation, and nonzero vari-
ables in the considered model. Four phases are
present: isotropic (I), uniaxial nematic (N), uniaxial
ferroelectric (V), and biaxial ferroelectric (V + 2).

Phase Symmetry Variables
I O(3) –
N D∞h S2

00

V C∞v S1
11, S2

20 = −√3S2
00

V + 2 C2v S1
11, S2

00, S2
20

Liquid phases of bent-core molecules from the consid-
ered model are listed in Table I. Phase transition types
obtained in the present paper can be summarized as fol-
lows:

1. I→N transition: first-order;

2. I→V transition: second-order or weakly first-order
(second-order in [3]);

3. I→V+2 transition: first-order (not present in [3]);

4. N→V + 2 transition: second-order;

5. V→V + 2 transition: second-order or weakly first-
-order (second-order in [3]).

Every transition has unique features which can be ob-
served from the temperature dependence of the order pa-
rameters or susceptibilities. Generally, the classification
by Lubensky and Radzihovsky [3] is completed. The re-
sults for the transitions I→V, I→V + 2, and V→V + 2
was obtained also by Mettout et al. [11] in a theory with
two vectors representing the six-dimensional order pa-
rameter associated with the transition from the isotropic
liquid to a polar nematic phase.

Solid ferroelectrics and related materials are of great
interest for applications in electronics and optoelectronics
(materials for capacitors, piezotransducers, light modu-
lators, light frequency converters, etc.). There is no fun-
damental reason that ferroelectric nematic phases should
not exist. However, typical ferroelectric fluids are chiral
smectic phases and related structures [12]. These layered
phases lack the high fluidity and self healing characteris-
tics that make nematics useful in electrooptical devices.



478 A. Kapanowski

Polar nematic phases of thermotropic liquid crystals are
expected to exhibit much faster and easier response to an
external electric field [13]. These materials may have in-
teresting technological applications [14], and that is why
a number of theoretical studies have focused on the pos-
sibility of realizing such phases. The effect of dipolar
forces on the structure and thermodynamic of classical
fluids was reviewed by Teixeira et al. [15]. Theoreti-
cal predictions and experimental observations concern-
ing polar achiral mesomorphic phases were presented by
Blinov [16].

The model fluids consisting of cylindrically symmetric
molecules with an electric dipole moment parallel to the
molecule symmetry axes were studied in many papers
[10, 17–19]. It was shown that the uniaxial ferroelectric
phase can be formed by disk-like molecules which have
reasonable electric dipole moments. However, steric in-
teractions between asymmetric molecules generally dis-
favor ferroelectric nematics. Sometimes more ordered
columnar or crystal phases are expected. The mean-field
theory was used to analyze the second-harmonic genera-
tion in a lyotropic liquid crystalline system [19] and the
presence of the ferroelectric ordering was revealed. In
computer simulations of a system of tapered molecules
the following sequence of phases was obtained on cooling
the sample: isotropic, apolar uniaxial nematic, polar uni-
axial nematic and smectic phases [20]. The polar nematic
phase was also stable after introduction of a small axial
dipole, thus yielding a ferroelectric nematic. The same
phases were found in the off-lattice Krieger–James model
of ordered fluids [21]. Dipolar hard spherocylinders were
studied by means of the Monte Carlo simulation [22] and
numerical analyses [23], where the polar nematic phase
was obtained when molecule dipole moments reached a
critical value.

Solid ferroelectrics usually have domain structure be-
cause a uniformly polarized state is unstable. It was
shown that the polar nematic phase is also unstable and
a helical structure is acquired in order to reduce the elec-
trostatic energy [24]. The helical pitch depends on the
geometric size of the sample, the absolute value of the
spontaneous polarization, and the elastic moduli.

Polar biaxial liquid crystalline phases were discussed
by Brand et al. [25]. The polar biaxial nematic phase
appeared to be a rather natural candidate for biaxial ne-
matic phases made of banana-shaped molecules. The
possibility of an occurrence of spontaneous bend and
splay was concluded. In 2008 Vanakaras and Photi-
nos [26] suggested the possibility of polar ordering within
the biaxial clusters in the macroscopically uniaxial ne-
matic phase composed of bent-core molecules. Under the
action of an electric field, the biaxial ferroelectric phase
could be obtained from the collective alignment of the do-
mains. The existence of biaxial and uniaxial ferroelectric
phases requires further experimental confirmation.

An extended version of the considered model can be
obtained from the Straley model of biaxial nematics [27]
by the inclusion of our P1(l1 · l2) term or the P1(n1 · n2)

term. Then the biaxial nematic N + 2 phase with D2h

symmetry would be present and new transition types
would be possible: I→N+2, N→N+2, or N+2→V+2.

Appendix A

Below we list the properties of the functions E
(j)
µν . The

functions can be used to describe any physical quantity
which depends on the three Euler angles.

1. The definition is

E(j)
µν (R) =

(
1√
2

)2+δ0µ+δ0ν 1
2
[
(1 + i) + (1− i)

× sgn(µ)sgn(ν)
][

D(j)
µν (R) + sgn(µ)sgn(ν)

× (−1)µ+νD
(j)
−µ,−ν(R) + sgn(ν)(−1)ν

×D
(j)
µ,−ν(R) + sgn(µ)(−1)µD

(j)
−µ,ν(R)

]
, (48)

where R = (φ, θ, ψ) (the three Euler angles), j
is a non-negative integer, µ and ν are integers.
Functions D

(j)
µν are standard rotation matrix ele-

ments [28] and

sgn(x) =

{
1 for x ≥ 0,

−1 for x < 0.
(49)

Let us note that

sgn(−x) = −sgn(x) + 2δ0x . (50)

2. The functions E
(j)
µν are real.

3. The functions satisfy the orthogonality relations∫
dRE(j)

µν (R)E(k)
ρσ (R) = δjkδµρδνσ8π2/(2j + 1) .

(51)
4. Let us assume that the three Euler angles R =

(φ, θ, ψ) determine the orientation of the three unit
orthogonal vectors (l,m,n). The functions E

(j)
µν

can be expressed in terms of the vector coordinates

E
(1)
00 (R) = nz , (52)

E
(1)
01 (R) = lz , (53)

E
(1)
10 (R) = nx , (54)

E
(1)
11 (R) = lx , (55)

E
(2)
00 (R) =

1
2
(−1 + 3n2

z) , (56)

E
(2)
02 (R) =

√
3

2
(−1 + n2

z + 2l2z) , (57)

E
(2)
20 (R) =

√
3

2
(−1 + n2

z + 2n2
x) , (58)

E
(2)
22 (R) =

1
2
(−3 + n2

z + 2l2z + 2n2
x + 4l2x) . (59)
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