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Fractional Revival of Rydberg Wave Packets
in Twice-Kicked One-Dimensional Atoms
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We study revival and fractional revival phenomena of wave packets in a one-dimensional Rydberg atom
irradiated by two time-delayed half-cycle pulses using an autocorrelation function characterized by electronic
transition probabilities as weighting factors rather than modeling them by a Gaussian or Lorentzian distribution.
If the momentum (q2) delivered to the atom by the second kick is much smaller than that (q1) imparted by the
first one, the times of revival and fractional revival coincide with those of the single kicked atom. For q2 ≥ q1

4
appearance of revival and fractional revival depends on both the values of q2 and time delay t1 between the pulses
but more sensitively on t1. The number of fractional revivals tends to become numerous as the value of t1 increases.

PACS: 32.80.Rm, 03.65.Wj

1. Introduction

The Rydberg wave packets in atoms were first cre-
ated by photoexcitation using ultrashort pulses [1, 2].
But since the pioneering experiment of Jones et al. [3],
unipolar electric field pulses of tetrahertz spectrum, of-
ten called half-cycle pulses (HCPs), have been found to
provide a very convenient tool to produce such packets.
The duration of an HCP is much shorter than the Kepler
period of the Rydberg electron such that during inter-
action the electron effectively receives an impulsive kick
from the former. The HCP can have sufficient bandwidth
to excite the neighbouring states of the kicked electron
resulting in the formation of a wave packet. The Rydberg
wave packets can be conveniently used to probe the cor-
respondence between classical and quantum mechanics
because of the following.

(i) Initially, the motion of the wave packet is periodic
with the same classical period tcl as that of a charged
particle in a Coulomb field.

(ii) However, this motion persists only for a few cycles
after which quantum interference effects cause the wave
packet first to collapse and then to undergo a sequence
of revivals.

The revivals of the wave packets occur due to recombi-
nation of collapsed wave packets at a time trev into a form
close to the original shape which again oscillates with pe-
riod tcl. In addition, we can also have superrevival at a
time tsr À trev. For various times earlier than trev the
wave packet gathers into a series of subsidiary wave pack-
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ets so as to exhibit fractional revivals [4]. These occur at
times equal to rational fractions of the full revival time.

The object of the present work is to study the re-
vival structure of wave packets as arising in a one-
-dimensional Rydberg atom due to the impact of two
half-cycle pulses with a time delay between their action.
The one-dimensional atomic model is an excellent ap-
proximation for the Rydberg atom in the extreme Stark
states and can faithfully mimic many properties of three-
-dimensional atoms [5]. Moreover, in this case one can
construct an exact analytical expression for the wave
packet irrespective of whether it is formed by the impact
of a single HCP or two time delayed HCPs [6, 7]. The
shape of a wave packet can be controlled using a train
of HCPs [8]. Recently, we found that for twice-kicked
atoms the shape depends sensitively on the time delay t1
between the kicks as well as the relative magnitudes of
the momenta q1 and q2 transferred to the atomic electron
by the HCPs [9]. It, however, remains an interesting cu-
riosity to critically examine how the revival structure of
the Rydberg wave packet depends on these parameters.
The present work is an effort in this direction. We shall
pay special attention on fractional revivals.

In Sect. 2, we present an expression for the wave packet
formed by the impact of two time delayed HCPs on a
one-dimensional atom. Such an expression could be con-
veniently used to control the shape of the wave packet
as well as to demonstrate its revival properties [9]. But
it cannot be used to look at the formation of mini pack-
ets corresponding to fractional revivals. The occurrence
of these subsidiary packets can be realized by taking re-
course to the use of so-called autocorrelation function [4]
defined as an overlap of the initial wave packet with the
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corresponding wave packet at a later time t. The auto-
correlation function gives a striking illustration of the dif-
ferent types of revival structures including the fractional
ones. Numerically, the absolute square of the autocor-
relation function varies between 0 and 1 and its period-
icities reveal the periodic behaviour of the wave packet.
Keeping this in view, we make use our result for the wave
packet to express the autocorrelation function in terms
of the momenta transferred to the atomic electron by
two half-cycle pulses as well as time delay between them.
Studies in fractional revivals for single kicked atoms is a
well studied problem [10]. But to our knowledge there do
not exist similar studies for twice kicked atoms. We feel
that it is highly interesting to investigate the influence
of the second time delayed HCP on the revival structure
produced by the impact of the first one. We also make
some useful observation on the expression presented. We
devote Sect. 3 to critically examine the effects of the sec-
ond delayed HCP on the revival structure of the wave
packet. We achieve this by plotting modulus square of
the autocorrelation function versus time of evolution for
different values of time delay and momentum transferred
by the second pulse. Finally, we make some concluding
remarks in Sect. 4.

2. Wave packet and autocorrelation function

When a sequence of two HCPs having time delay t1
between them is applied to the initial state |n〉 of a one-
-dimensional Rydberg atom, we obtain a wave packet of
the form [7]:

ψ(x, t, t1) =
∑

n′,n′′
e− iEn′′ (t−t1)Tn′′n′(q2)

× e− iEn′ t1Tn′n(q1)|n′′〉 , (1)

where q1 and q2 are the momenta transferred to the initial
and intermediate states of the electron by the consecutive
pulses. An interesting feature of the expression in (1) is
that in addition to the usual summation over the final
states |n′′〉 which are believed to form the wave packet,
it also involves a sum over all intermediate states |n′〉
between |n〉 and |n′′〉. The generic form of the transition
matrices Tn′n(q1) and Tn′′n′(q2) is given by [11]:

Tn′n(q) = 〈n′|e iqx|n〉 =
−z(λ− 2/n)n(λ− 2/n′)n′

√
n3n′3λn+n′

×
[(

n− 1
λ− 2/n

+
n′ − 1

λ− 2/n′
− n + n′

λ

)

× 2F1(−n + 1,−n′ + 1; 2; z)− (n− 1)(n′ − 1)
2

×
(

1
λ− 2/n

+
1

λ− 2/n′

)
z

× 2F1(−n + 2,−n′ + 2; 3; z)
]
, (2)

where

λ =
(

1
n

+
1
n′
− iq

)
(3)

and

z = − 4n′n
(n− n′)2 + q2n2n′2

. (4)

Here 2F1(.) represents a Gaussian hypergeometric func-
tion. From Eq. (1) it is clear that the wave packet
ψ(x, t, t1) is characterized by the transition matrix ele-
ments Tij(q), where i and j refer to principal quantum
numbers of either the kicked states or states which are
coherently excited. From Tij(q) = 〈i|e iqx|j〉 it is evi-
dent that Tij(q) should be one for i = j = n (say) and
q = 0. But the transition matrix element (2) in this case
becomes undefined because the argument z of the Gaus-
sian hypergeometric functions becomes infinity. This dif-
ficulty can, however, be removed by writing Tn′n(q) in an
alternative form given by [9]:

Tn′n = αn′n

n′−1∑

r′=0

βr′n′fm′n′n(q) , αn′n =
4√

n3n′3
,

m′ = r′ + 3 . (5)

Here

βr′n′ =
(
− 2

n′

)r′ 1
Γ (r′ + 2)

(
n′ − 1

r′

)
(6)

and

fm′n′n(q) =
Γ (m′)
y(q)m′ 2F1

(
−n + 1, 3 + r′; 2;

2
n

y(q)−1

)

(7)
with

y(q) = λ . (8)

From Eqs. (5)–(8), it is easy to verify that Tn′n(0) = 1
for n′ = n and 0 for n′ 6= n. We shall present all results of
this work by making use of (5) rather than (2). In close
analogy with the result for the single kicked atoms [10],
the autocorrelation function for the twice kicked atoms
can be written as

A(t, t1) = 〈ψ(x, 0, t1)|ψ(x, t, t1)〉 . (9)

Using (1) in (9) we get

A(t, t1) =
∑

n′n′′n′′′
e− iEn′′ tT ∗n′′n′′′(q2)T ∗n′′′n(q1)

×Tn′′n′(q2)Tn′n(q1)e i t1(En′′′−En′ ). (10)

From the expression in (10) it is apparent that the co-
herently excited final states which form the wave packet
have been denoted by the set {|n′′〉}. For a particular
value of n′′, the state |n′′〉 can be reached via two dif-
ferent intermediate states |n′〉 and |n′′′〉 as resulting from
the impact of the first HCP. The autocorrelation function
in (10) will depend on the time delay only if n′ 6= n′′′ else
it becomes independent of t1.

The T matrices Tn′n and Tn′′′n are strongly centered
around the kicked state n. As a result those states with
En′ and En′′′ near the value En enter appreciably into
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the sum in (10). This permits expansion of En′ and En′′′

in a Taylor series about the energy of the centrally ex-
cited state |n〉. We thus write

En′ = En +
m1

n3
− 3m2

1

2n4
(11)

and

En′′′ = En +
m3

n3
− 3m2

3

2n4
(12)

with

En = − 1
2n2

, m1 = n′ − n , and m3 = n′′′ − n .

(13)
Equations (11) and (12) can be written in terms of deriva-
tives, Ei

n = diEn

dni , i = 1, 2, 3, . . . , so as to introduce
distinct time scales that depend on n. We write

tcl =
2π

|E′
n|

, trev =
2π

1
2 |E′′

n|
and tsr =

2π
1
6 |E′′′

n |
,

E′
n = E1

n, E′′
n = E2

n etc. (14)

Here tcl is the classical Kepler period. The second time
scale trev is the revival time. The third time scale is the
superrevival time. The results in (14) refer strictly to the
time scales applicable to single kicked atom since Tn′n or
T ∗n′′′n corresponds to the T matrix or weight factor as-
sociated with the wave packet resulting from the impact
of first HCP. In a twice kicked atom trev and tsr will be
affected by the time delay t1 as well as by a contribution
from the exponential in (10). For n′′′ = n′, the autocor-
relation function in (10) will become independent of t1.
Also we note that for q2 = 0, T ∗n′′n′′′ and Tn′′n′ can be
replaced by δn′′n′′′ and δn′′n′ such that the autocorrela-
tion function of the twice kicked atom goes over to that
for the single kicked atom. This observation is likely to
provide a useful guide in presenting results for A(t, t1),
which we shall use to investigate the effects of second
HCP on the revival structure.

3. Revival times of the wave packet

In this section we shall make use of Eqs. (10)–(13) to
study revival properties of a wave packet produced by the
impact of two time delayed HCPs on a one-dimensional
Rydberg atom. We begin by noting that for q2 = 0,
A(t, t1)→A(t), the autocorrelation function of a single
kicked atom. The expression for A(t) is given by

A(t) =
∑

n′
e− iEn′ t|Tn′n|2. (15)

In general, the transition probabilities to different |n′〉
states depend on the parameter s = qn2 which is of the
order of unity in the weak field limit. In this case only
a few neighboring states are populated and a typical re-
vival phenomenon is observed. But to study fractional
revivals by the use of autocorrelation functions one usu-
ally needs to work with s = 5 and n = 50 [10] so that
q1 = 0.002 a.u. Using this value of q1 and En′ of (11) we
computed the numbers for the autocorrelation function

A(τ) (single kicked atom) from (15) at different values of
scaled time τ = t

tcl
, tcl = 2πn3.

Fig. 1. Modulus square of the autocorrelation func-
tion, |A(τ)|2 showing fractional revivals as a function
of scaled time τ for the momentum transfer q = q1 =
0.002 a.u. in a single kicked atom.

Figure 1 gives |A(τ)|2 as a function of τ . The highest
peak of |A(τ)|2 occurs at τ = 16.53

(≈ n
3

)
and corre-

sponds to the revival of the wave packet. The fractional
revivals appear at times τ

4 , τ
3 , τ

2 , 2τ
3 and 3τ

4 . The results
of this figure are in agreement with those found by mod-
elling the T matrices by a Gaussian distribution with
standard deviation σ = 3 [10]. We have verified that
the use of Lorentzian distribution instead of the Gaus-
sian also leads to similar results. However, we feel that
it is always desirable to work in a purely quantum me-
chanical theory in which transition matrices occur in the
expression for wave packet or autocorrelation function in
a rather natural way. Keeping this in view, we made use
of (10) to critically examine how the revival structures of
Fig. 1 is affected by the action of the second time-delayed
pulse.

Fig. 2. Modulus square of the autocorrelation func-
tion, |A(τ, τ1)|2 showing fractional revivals as a func-
tion of scaled time τ in a twice kicked atom for q1 =
0.002 a.u., q2 = q1

16
and time delay τ1 = 1.

Figures 2–5 display the results for |A(τ, τ1)|2 computed
from (10) as a function of τ for different values of q2

and τ1. Let us note that, in addition to the contin-
uous variable τ , the autocorrelation function A(τ) de-
pends on the discrete variable q1. Similarly, for the twice
kicked atom A(τ, τ1) depends on both discrete variables
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Fig. 3. The same as that in Fig. 2 but q2 = q1
4
, (a) τ1 =

2 and (b) τ1 = 5.

Fig. 4. The same as that in Fig. 2 but q2 = q1
2
, (a) τ1 =

2 and (b) τ1 = 5.

q1 and q2. In Fig. 2, we present results for |A(τ, τ1)|2
for q2 = q1

16 and τ1 = 1. For this value of q2 and τ1,
the revival structure of |A(τ, τ1)|2 is identical with that
of |A(τ)|2 presented in Fig. 1. We have verified that for
this small value of q2 the revival structure of |A(τ, τ1)|2
remains unaltered for other higher values of τ1. The re-
sult is quite expected since an extremely weak second
HCP may not have any effect on population distribution
(|Tn′n|2) such that |A(τ, τ1)|2 ≈ |A(τ)|2 for all values
of τ1. But this may not be true when q2 takes up larger
values and tends towards q1. To visualize how the results
for |A(τ, τ1)|2 deviate from those for |A(τ)|2 as q2→ q1

we have plotted in Figs. 3–5 |A(τ, τ1)|2 as a function τ
for q2 = q1

4 , q1
2 , q1, respectively. In these figures the up-

Fig. 5. The same as that in Fig. 2 but q2 = q1, (a) τ1 =
2 and (b) τ1 = 5.

per parts give the results for τ1 = 2 and the lower parts
give those for τ1 = 5. Looking into the results in Fig. 3
we see that for τ1 = 2 the revival time of the wave packet
is τ = 32.03. This number is approximately twice as that
for the single kicked atom. For τ1 = 5 the revival of the
wave packet occurs at a still large value of τ , namely,
τ = 66.98. Also we note that the number of fractional
revivals for τ1 = 2 is six while that for τ1 = 5 is eight.
Both numbers are bigger than the number of fractional
revivals of the single kicked atom, the number for τ1 = 5
being larger than that for τ1 = 2. In general, the times
of revival and numbers of fractional revival increase as
the values of q2 become large. For a given value of q2

these numbers increase as τ1 becomes bigger. This can
be verified by noting the times of revival and counting the
number of fractional revivals as exhibited by the plots in
Figs. 4 and 5.

From Figs. 2–5 it can be seen that as the value of q2 is
increased from q1

16 to q1 the heights of the peaks showing
revivals and fractional revivals decrease roughly by 50%.
We verified that such diminutions increase as we go to
still higher values of q2 such that the revival structure
might become physically unobservable. However, it is
apparent from our study that for large q2 values the im-
pact of the time delayed second HCP causes the wave
packet to reappear at much later time than that would
be observed in the absence of it and simultaneously in-
duces fractional revivals, the times of which are also quite
different from those found in case of single kicked atoms
or twice kicked atoms with rather low value of the mo-
mentum transferred by the second HCP.

To summarize the results displayed in Figs. 3–5 we
present in Table the revival times of the wave packet in
a twice kicked atom for different values of time delay
τ1 and momentum q2 transferred by the second kick to
the electron excited by the impact of the first one. The
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TABLE
Variation of scaled revival time with q2 and τ1.

q2\τ1 1 2 3 4 5
q1
16

16.53 16.53 16.53 16.53 16.53
q1
8

16.53 16.53 16.53 16.53 16.53
q1
4

16.53 32.03 56.07 66.98 66.98
q1
2

17.48 41.01 57.49 71.09 73.31
q1 29.34 43.2 59.01 75.84 85.61

first two rows of the table show that for small values
of q2 the revival time is independent of both τ1 and q2.
This was why we presented plot of |A(τ, τ1)|2 only for
q2 = q1

16 (Fig. 2). As we go to the higher values of q2, the
revival times first increase with τ1 and then tend to take
up a constant value. Looking closely into the numbers
of this table we see that the revival times depend more
sensitively on τ1 than on q2 when q2 ≥ q1

4 . For example,
in the third row (q2 = q1

4 ) of the table we see that as τ1

goes from 1 to 5 the revival time changes by roughly 50tcl.
The results in rows 4 to 5 also exhibit similar changes.
On the other hand, for a fixed value of τ1 the change in
revival time is relatively small as we move from lower to
higher q2 values. This is true for every column in Table.

4. Conclusion

We presented an expression for the autocorrelation
function A(t, t1) for wave packets formed in a twice kicked
one-dimensional Rydberg atom. Our expression (10)
clearly shows that the final atomic states |n′′〉 the super-
position of which forms the wave packet can be reached
via the intermediate states, namely, |n′〉 and |n′′′〉. For
n′ = n′′′, the autocorrelation function becomes indepen-
dent of the time delay t1 between the pulses since the
last factor in (10) becomes unity. Thus the term in the
summation of (10) having n′ = n′′′ is physically unde-
sirable. In view of this we omitted the contribution of

this term in presenting all numerical results. We used
the constructed expression for A(t, t1) to study the re-
vival structure of the wave packet with special attention
on the effect of the second HCP on the times of revival
and fractional revivals. From the numerical results for
A(t, t1) we could conclude that when the momentum de-
livered to the atom by the second HCP is not too small
compared to that delivered by the first one, it is possible
to manipulate the time delay t1 between the pulses to
observe wave packet revival at any desired time t. It is
also possible to increase the number of fractional revivals
by increasing the value of t1.
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