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Tunable Entanglement Sudden Death and Birth
in Cavity QED with Nonlinear Kerr-Like Medium
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The influence of nonlinear Kerr-like medium on the phenomenon of entanglement sudden death and birth
in a double Jaynes–Cummings model is investigated. It is shown that the entanglement sudden death and
birth phenomenon may appear in this system and the duration of entanglement sudden death and birth can be
controlled by the nonlinear Kerr-like medium. Particularly, the phenomenon of entanglement sudden death and
birth disappears one after another if we increase the value of the Kerr coefficient χ continuously, and all disappears
if the value of the Kerr coefficient χ is large enough.
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1. Introduction

It is well known that the entanglement is a special
quantum correlation and has been viewed as an indis-
pensable resource in quantum information processing
[1–5]. The cavity quantum electrodynamics system offers
a useful tool to generate entangled states [6] and manipu-
late entanglement. It can be used to create the entangle-
ment between atoms in cavities and establish quantum
communications between different optical cavities [7–9].

Control of the evolution of the qubit entanglement
is one of the challenges of realizing quantum informa-
tion processing. The entanglement dynamics of qubit
pairs have attracted much attention [10–18] since Yu
and Eberly [10] pointed out that the entanglement be-
tween two qubits interacting with uncorrelated reservoirs
may disappear within a finite time during the dynam-
ics evolution. This phenomenon, called entanglement
sudden death (ESD) has been observed in the experi-
ments [19, 20]. Recently, the quantum dynamics of a
system consisting of two cavities interacting with two in-
dependent reservoirs has been studied [21]. It is shown
that ESD in a bipartite system independently coupled
to reservoirs is related to the entanglement sudden birth
(ESB) [15, 16] and the ESB could occur after, together,
or even before ESD.

In this paper, we investigate the entanglement dynam-
ics of a double two-photon Jaynes–Cummings model with
an added nonlinear Kerr-like medium. Initially, the two
atoms are prepared in the extended Werner-like states
and the cavity field is prepared in the vacuum state. It is
shown that the ESD and ESB phenomenon may appear
in this system and the duration of ESD and ESB can
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be altered by the nonlinear Kerr-like medium. In addi-
tion, the amount of the entanglement of the atoms or the
other bipartite partitions of the system can be obviously
altered by applying nonlinear Kerr-like medium. Partic-
ularly, the phenomenon of ESD and ESB disappears one
after another if we increase the value of the Kerr coef-
ficient χ continuously, and all disappears if the value of
the Kerr coefficient χ is large enough.

2. The influence of nonlinear Kerr-like medium
on the entanglement sudden death

and sudden birth

We consider the system consisting of two noninteract-
ing two-level atoms, each atom is trapped inside a single-
-mode optical cavity which is filled with a nonlinear Kerr-
-like medium (see Fig. 1). The Hamiltonian of the whole
system can be written as [22]:

H =
2∑

i=1

[
ωca

†
iai +

ωa

2
σz

i + χa†2i a2
i

+ g
(
a†2i σ−i + a2

i σ
+
i

)]
, (1)

where a† and a are the creation and annihilation opera-
tors of the cavity mode, σz and σ± are the atomic opera-
tors, ωa is the atomic transition frequency, g is atom-field
coupling constant and χ is the Kerr coupling constant.
For simplicity, we consider the resonance case and set
~ = 1 in this paper.

For a bipartite system, there are some effective and
equivalent methods for measuring of the entanglement,
such as log-negativity, entanglement entropy, concur-
rence and so on. In this paper, we adopt the concur-
rence [23] to quantify the degree of entanglement. For
two qubits, the concurrence can be defined as

(390)
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Fig. 1. Schematic diagram of the system which is in-
vestigated in the present paper.

C(ρ) = max
{

0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4

}
, (2)

where the λi (i = 1, 2, 3, 4) are the eigenvalues in a de-
creasing order of the magnitude of the “spin-flipped” den-
sity matrix operator R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) and σy

is the Pauli Y matrix, ρ∗ is the complex conjugate of ρ.
Particularly, for a density matrix of the form

ρ =




a 0 0 f

0 b e 0
0 e∗ c 0
f∗ 0 0 d


, (3)

called “X states”, where a + b + c + d = 1. The concur-
rence can be easily computed as [24]:

C(ρ) = 2 max
{

0, |e| −
√

ad, |f | −
√

bc
}

. (4)

Next, we study the influence of the nonlinear Kerr-
-like medium on the entanglement sudden death and sud-
den birth in this system. We assume the initial states of
the two atoms are prepared in the extended Werner-like
states and the two cavities are prepared in vacuum states.
The extended Werner-like states are defined by [25]:

ρΦ(0) = r|Φ〉〈Φ|+ 1− r

4
I ,

ρΨ (0) = r|Ψ〉〈Ψ |+ 1− r

4
I ,

|Φ〉 = µ|ge〉+ ν|eg〉 ,
|Ψ〉 = µ|gg〉+ ν|ee〉 , (5)

where r is a real number which indicates the purity of
initial states, for r = 0 the extended Werner-like states
become totally mixed states, while for r = 1 they are
the well-known Bell states. I is a 4 × 4 identity matrix,
µ and ν are complex numbers with |µ|2 + |ν|2 = 1, |e〉
and |g〉 are the excited and ground states of the two-level
atom.

We first consider that the density matrix of the whole
system at t = 0 is

ρ(0) = ρΦ(0)⊗ |0〉c1c1〈0| ⊗ |0〉c2c2〈0| . (6)

It is not difficult to find that the density matrix of the
system at time t is

ρ(t) =
1− r

4
[
A2

0(t)|ee〉a1a2 |00〉c1c2

+A0(t)B0(t)|eg〉a1a2 |02〉c1c2

+B0(t)A0(t)|ge〉a1a2 |20〉c1c2

+B2
0(t)|gg〉a1a2 |22〉c1c2

][
A∗20 (t)〈ee|a1a2〈00|c1c2

+A∗0(t)B
∗
0(t)〈eg|a1a2〈02|c1c2

+B∗
0(t)A∗0(t)〈ge|a1a2〈20|c1c2

+B∗2
0 (t)〈gg|a1a2〈22|c1c2

]

+
(

r|ν|2 +
1− r

4

)[
A0(t)|eg〉a1a2 |00〉c1c2

+B0(t)|gg〉a1a2 |20〉c1c2

][
A∗0(t)〈eg|a1a2〈00|c1c2

+B∗
0(t)〈gg|a1a2〈20|c1c2

]

+ rνµ∗
[
A0(t)|eg〉a1a2 |00〉c1c2

+B0(t)|gg〉a1a2 |02〉c1c2

][
A∗0(t)〈ge|a1a2〈00|c1c2

+B∗
0(t)〈gg|a1a2〈02|c1c2

]

+ rµν∗
[
A0(t)|ge〉a1a2 |00〉c1c2

+B0(t)|gg〉a1a2 |02〉c1c2

][
A∗0(t)〈eg|a1a2〈00|c1c2

+B∗
0(t)〈gg|a1a2〈20|c1c2

]

+
(

r|µ|2 +
1− r

4

)[
A0(t)|ge〉a1a2 |00〉c1c2

+B0(t)|gg〉a1a2 |02〉c1c2

][
A∗0(t)〈ge|a1a2〈00|c1c2

+B∗
0(t)〈gg|a1a2〈02|c1c2

]

+
1− r

4
|gg〉a1a2 |00〉c1c2〈gg|a1a2〈00|c1c2 , (7)

with

A0(t) = exp(− iχt)
[
cos(Ωt) +

iχ
Ω

sin(Ωt)
]

,

B0(t) = exp(− iχt)

[
− i
√

2g sin(Ωt)
Ω

]
, (8)

where Ω =
√

2g2 + χ2.

Tracing over the degrees of the freedom of cavities, we
obtain the reduced density matrix of atoms a1 and a2:

ρa1a2(t) =
1− r

4
[|A2

0(t)|2|ee〉a1a2〈ee|a1a2

+ |A0(t)B0(t)|2|eg〉a1a2〈eg|a1a2

+ |A0(t)B0(t)|2|ge〉a1a2〈ge|a1a2
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+ |B2
0(t)|2|gg〉a1a2〈gg|a1a2

]

+
(

r|ν|2 +
1− r

4

)[|A0(t)|2|eg〉a1a2〈eg|a1a2

+ |B0(t)|2|gg〉a1a2〈gg|a1a2

]

+ rνµ∗
[|A0(t)|2|eg〉a1a2〈ge|a1a2

]

+ rµν∗
[|A0(t)|2|ge〉a1a2〈eg|a1a2

]

+
(

r|µ|2 +
1− r

4

)[|A0(t)|2|ge〉a1a2〈ge|a1a2

+ |B0(t)|2|gg〉a1a2〈gg|a1a2

]

+
1− r

4
|gg〉a1a2〈gg|a1a2 , (9)

which leads to the explicit expression of concurrence of
the above density matrix,

Ca1a2(t) = 2 max
{

0, |rµν||A0(t)|2 −
√

1− r

4
|A0(t)|2

×
[
1− r

4
|B2

0(t)|2 +
(

r|ν|2 +
1− r

4

)
|B0(t)|2

+
(

r|µ|2 +
1− r

4

)
|B0(t)|2 +

1− r

4

]1/2}
. (10)

Similarly, the reduced density matrix of two cavities
can be calculated as

ρc1c2(t) =
1− r

4
[|A2

0(t)|2|00〉c1c2〈00|c1c2

+ |A0(t)B0(t)|2|02〉c1c2〈02|c1c2

+ |A0(t)B0(t)|2|20〉c1c2〈20|c1c2

+ |B2
0(t)|2|22〉c1c2〈22|c1c2

]

+
(

r|ν|2 +
1− r

4

)[|A0(t)|2|00〉c1c2〈00|c1c2

+ |B0(t)|2|20〉c1c2〈20|c1c2

]

+ rνµ∗
[|B0(t)|2|20〉c1c2〈02|c1c2

]

+ rµν∗
[|B0(t)|2|02〉c1c2〈20|c1c2

]

+
(

r|µ|2 +
1− r

4

)[|A0(t)|2|00〉c1c2〈00|c1c2

+ |B0(t)|2|02〉c1c2〈02|c1c2

]

+
1− r

4
|00〉c1c2〈00|c1c2 , (11)

and the concurrence is given by

Cc1c2(t) = 2 max
{

0, |rµν||B0(t)|2 −
√

1− r

4
|B0(t)|2

×
[
1− r

4
|A2

0(t)|2 +
(

r|ν|2 +
1− r

4

)
|A0(t)|2

+
(

r|µ|2 +
1− r

4

)
|A0(t)|2 +

1− r

4

]1/2}
. (12)

In Fig. 2, we plot the evolution of concurrence between
the two atoms Ca1a2 (solid line) and the two cavities Cc1c2

(dotted line) for different values of the Kerr coefficient χ
with r = 2/3, |µ|2 = 1/12, |ν|2 = 11/12 and g = 1.
We can see that the concurrence Ca1a2 disappears sud-
denly and the concurrence Cc1c2 appears suddenly dur-
ing the dynamics evolution, which means that the ESD
(solid line) and ESB (dotted line) appears in this sys-
tem. The ESD and ESB phenomenon demonstrate that
the entanglement contained initially in the atom–atom
subsystem is transferred to the cavity–cavity subsystem.
By requiring that Ca1a2(tESD) = 0 and Cc1c2(tESB) = 0
in Eqs. (10) and (12), respectively, we can obtain the
times for which ESD and ESB occur

tESD =
1
Ω

arcsin

(
Ω
g

√
16r2|µν|2 − (1− r)2

2(1− r)(3 + r)

)
,

tESB =
1
Ω

arcsin

(
Ω
g

√
2(1− r − 4r2|µν|2)

(1− r)(3 + r)

)
, (13)

where Ω =
√

2g2 + χ2. From the above formulae, it
is not difficult to find that the times for which ESD
(tESD) and ESB (tESB) occur and the amount of en-
tanglement between two cavities could be altered by ad-
justing the Kerr coefficient χ and the parameters of the
initial states. Furthermore, from the above relations
one can learn that the phenomenon of ESD occurs for
(1 + 4|µν|)−1 < r < (

√
1 + 16|µν|2 − 1)/(8|µν|2) in the

case of the Kerr coefficient χ = 0.
In Fig. 3, we plot the evolution of two-qubit concur-

rence Ca1a2 (solid line) and Cc1c2 (dotted line) for dif-
ferent values of the Kerr coefficient χ with r = 2/3,
|µ|2 = 1/6, |ν|2 = 5/6 and g = 1. Comparing with
Fig. 2, we can see the times for which ESD (tESD) and
ESB (tESB) occur depending on the parameters µ and ν.
In the case of |µ|2 = 1/12 and |ν|2 = 11/12, tESD < tESB,
namely, ESD appears before ESB. Nevertheless when
|µ|2 = 1/6 and |ν|2 = 5/6, tESD > tESB, namely, ESD
appears after ESB. Again, the duration of ESD and ESB
and the amount of entanglement between two cavities
can be altered by adjusting the Kerr coefficient χ. Par-
ticularly, from the part (c) of Fig. 2 and Fig. 3, we can
find that the phenomenon of ESD and ESB disappears
one after another if we increase the value of the Kerr co-
efficient χ continuously. In the part (c) of Fig. 2, the
ESB disappears earlier than ESD. But in the part (c) of
Fig. 3, the ESD disappears earlier than ESB. This means
that the phenomenon of the ESD and ESB can be con-
trolled by adjusting the Kerr coefficient χ and disappears
one after another. The phenomenon of ESD and ESB all
disappears if the value of the Kerr coefficient χ is large
enough. The physical explain is that in the case of g ¿ χ,
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Fig. 2. Evolution of two-qubit concurrence Ca1a2

(solid line) and Cc1c2 (dotted line), for the initial state
of atoms ρΦ(0) with r = 2/3, |µ|2 = 1/12, |ν|2 = 11/12
and g = 1. (a) χ = 0; (b) χ = 0.7; (c) χ = 1.5;
(d) χ = 2.5.

Fig. 3. Evolution of two-qubit concurrence Ca1a2

(solid line) and Cc1c2 (dotted line), for the initial state
of atoms ρΦ(0) with r = 2/3, |µ|2 = 1/6, |ν|2 = 5/6 and
g = 1. (a) χ = 0; (b) χ = 0.7; (c) χ = 1.5; (d) χ = 2.5.

the A0(t) and B0(t) approximately behave as when g = 0,
which refers to the situation in which the atoms would
not interact with the cavities. Of course, without in-
teraction no flow of entanglement can occur among the
different partitions and hence no ESD and ESB.

In the following, we assume that the initial states of
the two atoms are in the ρΨ (0) and the density matrix
of the system at t = 0 reads

ρ(0) = ρΨ (0)⊗ |0〉c1c1〈0| ⊗ |0〉c2c2〈0| . (14)
A similar calculation shows that the density matrix of

the system at time t is

ρ(t) =
(

r|ν|2 +
1− r

4

)[
A2

0(t)|ee〉a1a2 |00〉c1c2

+A0(t)B0(t)|eg〉a1a2 |02〉c1c2

+B0(t)A0(t)|ge〉a1a2 |20〉c1c2

+B2
0(t)|gg〉a1a2 |22〉c1c2

][
A∗20 (t)〈ee|a1a2〈00|c1c2

+A∗0(t)B
∗
0(t)〈eg|a1a2〈02|c1c2

+B∗
0(t)A∗0(t)〈ge|a1a2〈20|c1c2

+B∗2
0 (t)〈gg|a1a2〈22|c1c2

]

+
1− r

4
[
A0(t)|eg〉a1a2 |00〉c1c2

+B0(t)|gg〉a1a2 |20〉c1c2

][
A∗0(t)〈eg|a1a2〈00|c1c2

+B∗
0(t)〈gg|a1a2〈20|c1c2

]

+
1− r

4
[
A0(t)|ge〉a1a2 |00〉c1c2

+B0(t)|gg〉a1a2 |02〉c1c2

][
A∗0(t)〈ge|a1a2〈00|c1c2

+B∗
0(t)〈gg|a1a2〈02|c1c2

]

+
(

r|µ|2 +
1− r

4

)
|gg〉a1a2 |00〉c1c2〈gg|a1a2〈00|c1c2

+ rνµ∗
[
A2

0(t)|ee〉a1a2 |00〉c1c2

+A0(t)B0(t)|eg〉a1a2 |02〉c1c2

+B0(t)A0(t)|ge〉a1a2 |20〉c1c2

+B2
0(t)|gg〉a1a2 |22〉c1c2

]〈gg|a1a2〈00|c1c2

+ rµν∗|gg〉a1a2 |00〉c1c2

[
A∗20 (t)〈ee|a1a2〈00|c1c2

+A∗0(t)B
∗
0(t)〈eg|a1a2〈02|c1c2

+B∗
0(t)A∗0(t)〈ge|a1a2〈20|c1c2

+B∗2
0 (t)〈gg|a1a2〈22|c1c2

]
. (15)
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Tracing over the degrees of the freedom of cavities, we
obtain the reduced density matrix of atoms a1 and a2,

ρa1a2(t) =
(

r|ν|2 +
1− r

4

)[|A2
0(t)|2|ee〉a1a2〈ee|a1a2

+ |A0(t)B0(t)|2|eg〉a1a2〈eg|a1a2

+ |A0(t)B0(t)|2|ge〉a1a2〈ge|a1a2

+ |B2
0(t)|2|gg〉a1a2〈gg|a1a2

]

+
1− r

4
[|A0(t)|2|eg〉a1a2〈eg|a1a2

+ |B0(t)|2|gg〉a1a2〈gg|a1a2

]

+
1− r

4
[|A0(t)|2|ge〉a1a2〈ge|a1a2

+ |B0(t)|2|gg〉a1a2〈gg|a1a2

]

+
(

r|µ|2 +
1− r

4

)
|gg〉a1a2〈gg|a1a2

+ rνµ∗
[
A2

0(t)|ee〉a1a2〈gg|a1a2

]

+ rµν∗
[
A∗20 (t)|gg〉a1a2〈ee|a1a2

]
. (16)

Inserting Eq. (16) into Eq. (4), we find that the explicit
expression of the concurrence between two atoms is

Ca1a2(t) = 2 max
{

0, |rµν||A0(t)|2 −
[(

r|ν|2 +
1− r

4

)

× |B0(t)A0(t)|2 +
1− r

4
|A0(t)|2

]}
. (17)

Similarly, the reduced density matrix of two cavities is

ρc1c2(t) =
(

r|ν|2 +
1− r

4

)[|A2
0(t)|2|00〉c1c2〈00|c1c2

+ |A0(t)B0(t)|2|02〉c1c2〈02|c1c2

+ |A0(t)B0(t)|2|20〉c1c2〈20|c1c2

+ |B2
0(t)|2|22〉c1c2〈22|c1c2

]

+
1− r

4
[|A0(t)|2|00〉c1c2〈00|c1c2

+ |B0(t)|2|20〉c1c2〈20|c1c2

]

+
1− r

4
[|A0(t)|2|00〉c1c2〈00|c1c2

+ |B0(t)|2|02〉c1c2〈02|c1c2

]

+
(

r|µ|2 +
1− r

4

)
|00〉c1c2〈00|c1c2

+ rνµ∗B2
0(t)|22〉c1c2〈00|c1c2

+ rµν∗B∗2
0 (t)|00〉c1c2〈22|c1c2 , (18)

and the concurrence is

Cc1c2(t) = 2 max
{

0, |rµν||B0(t)|2 −
[(

r|ν|2 +
1− r

4

)

× |B0(t)A0(t)|2 +
1− r

4
|B0(t)|2

]}
. (19)

In Fig. 4, we plot the evolution of concurrence between
the two atoms Ca1a2 (solid line) and the two cavities
Cc1c2 (dotted line) for different values of the Kerr co-
efficient χ with r = 2/3, |µ|2 = 1/6, |ν|2 = 5/6 and
g = 1. On the one hand, we find that the concurrence
of two atoms Ca1a2 disappears within a finite time dur-
ing the dynamics evolution (solid line). On the other
hand, the concurrence of two cavities Cc1c2 appears dur-
ing the dynamics evolution (dotted line), which means
that the entanglement contained initially in the atom–
atom subsystem flows into the cavity–cavity subsystem.
By requiring that Ca1a2(tESD) = 0 and Cc1c2(tESB) = 0
in Eqs. (17) and (19), respectively, we can find the times
for which ESD and ESB occur

tESD =
1
Ω

arccos

(√
1− Ω2

2g2

(4r|µν|+ r − 1)
(4r|ν|2 − r + 1)

)
,

tESB =
1
Ω

arccos

(√
− χ2

2g2
+

Ω2

2g2

(4r|µν|+ r − 1)
(4r|ν|2 − r + 1)

)
,

(20)
where Ω =

√
2g2 + χ2. From the above expressions, it is

not difficult to find that the times for which ESD (tESD)
and ESB (tESB) occur and the amount of entanglement
between two cavities could be altered by adjusting the
Kerr coefficient χ and the parameters of the initial states.
Furthermore, one can see that the phenomenon of ESD
occurs if we choose the parameters of the initial states
to satisfy two inequalities (2|µν| + 1 − 2|ν|2)r < 1 and
r > 1/(4|µν|+1) in the case of the Kerr coefficient χ = 0.

In Fig. 5, we plot the evolution of two-qubit concur-
rence Ca1a2 (solid line) and Cc1c2 (dotted line) for dif-
ferent values of the Kerr coefficient χ with r = 2/3,
|µ|2 = 3/5, |ν|2 = 2/5 and g = 1. Comparing with
Fig. 4, we can see the times for which ESD (tESD) and
ESB (tESB) occur depending on the parameters µ and ν.
In the case of |µ|2 = 1/6 and |ν|2 = 5/6, the ESD ap-
pears before ESB, that is, tESD < tESB. However, when
|µ|2 = 3/5 and |ν|2 = 2/5, the ESD appears after ESB,
that is, tESD > tESB. Again, the duration of ESD and
ESB and the amount of entanglement between two cav-
ities can be altered by adjusting the Kerr coefficient χ.
Particularly, from part (c) of Fig. 4 and Fig. 5, we can
see that the phenomenon of ESD and ESB disappears
one after another if we increase the value of the Kerr co-
efficient χ continuously. In the part (c) of Fig. 4, the
ESB disappears earlier than ESD. But in the part (c) of
Fig. 5, the ESD disappears earlier than ESB. These re-
sults demonstrate that the phenomenon of the ESD and
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Fig. 4. Evolution of two-qubit concurrence Ca1a2

(solid line) and Cc1c2 (dotted line), for the initial state
of atoms ρΨ (0) with r = 2/3, |µ|2 = 1/6, |ν|2 = 5/6 and
g = 1. (a) χ = 0; (b) χ = 0.7; (c) χ = 1.5; (d) χ = 2.5.

ESB disappears one after another if we increase the value
of the Kerr coefficient χ continuously, and all disappear
if the value of the Kerr coefficient χ is large enough. The
physical reason is similar to the case of two atoms are
prepared initially in the state ρΦ(0).

In order to have an idea of how the entanglement is
shared among the different partitions in the present sys-
tem, we display the bipartite entanglement of a1 ⊗ a2,
c1 ⊗ c2, a1 ⊗ c2, and a1 ⊗ c1 in Fig. 6 (C(Φ)) and Fig. 7
(C(Ψ)). It can be observed that the concurrence Ca1c2

can exceed zero in the evolution of this system. This im-
plies that the atom a1 and cavity c2 which start uncorre-
lated and do not interact, then become entangled as the
system evolves. From Fig. 6 and Fig. 7, it is worth noting
that in the region where there is no entanglement, there
is, Ca1a2 = Cc1c2 = Ca1c2 = 0, but the entanglement
between atom a1 and its corresponding cavity c1 (Ca1c1)
reaches its maximum value. Furthermore, from Eqs. (10)
and (12), we can verify that Ca1a2(t) = 2|µν|A2

0(t) and
Cc1c2(t) = 2|µν|B2

0(t) for the initial state ρΦ(0) when
r = 1. For this case, there are no ESD and ESB, but
nothing similar seems to occur for ρΨ (0). Particularly, it
is clear to see that in this case Ca1a2(t)+Cc1c2(t) = 2|µν|,
which means that the amount of entanglement is con-
served in these two partitions. It is interesting to check
that whether the entanglement appears anywhere else in
this “conservative case” in the further work.

Fig. 5. Evolution of two-qubit concurrence Ca1a2

(solid line) and Cc1c2 (dotted line), for the initial state
of atoms ρΨ (0) with r = 2/3, |µ|2 = 3/5, |ν|2 = 2/5 and
g = 1. (a) χ = 0; (b) χ = 0.7; (c) χ = 1.5; (d) χ = 2.5.

Fig. 6. Evolution of the two qubits concurrence for
different bipartite partitions: Ca1a2 (solid line), Cc1c2

(dotted line), Ca1c2 (dot-dashed line) and Ca1c1 (dashed
line), for the initial state of atoms ρΦ(0) with r = 2/3,
g = 1, |µ|2 = 1/12, |ν|2 = 11/12 and χ = 0.

Fig. 7. Evolution of the two qubits concurrence for
different bipartite partitions: Ca1a2 (solid line), Cc1c2

(dotted line), Ca1c2 (dot-dashed line) and Ca1c1 (dashed
line), for the initial state of atoms ρΨ (0) with r = 2/3,
g = 1, |µ|2 = 1/3, |ν|2 = 2/3 and χ = 0.
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3. Conclusion

In this paper, we investigate the entanglement dynam-
ics of a double two-photon Jaynes–Cummings model with
an added nonlinear Kerr-like medium and show that the
phenomenon of ESD and ESB appears in this system.
The ESD and ESB phenomenon imply that the loss of
entanglement between two atoms is related to the birth
of entanglement between two cavities and the other par-
titions. It is clear to see that ESD and ESB occur at
times depending on the parameter r, µ and ν of the ini-
tial entangled states, and the ESD can occur before, to-
gether, or even after ESB. Furthermore, we find that the
duration of ESD and ESB and the amount of entangle-
ment of two qubits can be altered by adjusting the Kerr
coefficient χ. Particularly, the phenomenon of ESD and
ESB disappears one after another if we increase the value
of the Kerr coefficient χ continuously. This means that
the ESD and ESB phenomenon can be controlled by ad-
justing the Kerr coefficient χ and disappears one after
another. From the part (c) of Fig. 2 to Fig. 5, we can ob-
serve that if the ESD appears before ESB (tESD < tESB),
then the ESB disappears earlier than ESD. On the con-
trary, the ESD disappears earlier than ESB if the ESD
appears after ESB (tESD > tESB). The phenomenon of
ESD and ESB all disappears if the value of the Kerr co-
efficient χ is large enough.
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