
Vol. 120 (2011) ACTA PHYSICA POLONICA A No. 2

12 Annual Conference of the Materials Research Society of Serbia, Herceg Novi, Montenegro, September 6–10, 2010

Binding Energy of the Hydrogenic Impurity in CdTe/ZnTe
Spherical Quantum Dot
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Binding energy of a hydrogenic impurity located at the center of the CdTe/ZnTe spherical quantum dot
has been calculated under the effective mass approximation by solving Schrödinger equation analytically. Eigen
energies are expressed in terms of the Whittaker function and Coulomb wave function. The results show that
impurity binding energy strongly depends on QD size if it is around one effective Bohr radius.
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1. Introduction

Among semiconductor quantum nanostructures seri-
ous attention is focused on the zero-dimensional quantum
dot (QD). These structures have found various applica-
tion areas especially as electronic, optoelectronic devices
or in bioscience for biolabeling. Therefore, semiconductor
QDs, especially their optical properties, have been inten-
sively studied both theoretically and experimentally in
applied physics [1].

The electronic states are very sensitive to the dimen-
sion of QD. Properties of the materials we combine to
form the structure as: confining potential or effective
masses of free carriers in materials, can become impor-
tant for the properties of designed structure. As number
of electrons increase, the electron-electron interaction be-
comes remarkable, the effective potential is changed and
the energy levels are pushed up. In presence of the hy-
drogenic impurity, located inside low-dimensional system
as QD, electronic levels are pulled down. Consequently,
the electronical and optical properties of these structures
can be drastically changed.

Influence of hydrogenic impurity in a low-dimensional
system can be experimentally registered and calculated
as change in the electronic and optical properties as:
donor binding energy, behavior in electric and magnetic
field, photoionization cross section, absorption spectra
and other optical properties [2].

In last few years CdTe/ZnTe system is under inten-
sive investigation especially as a candidate for spin trans-
fer [3–5]. All parameters of these materials are well es-
tablished.

The aim of this paper is to present results of calcula-
tion of one-electron system with a hydrogenic impurity
in the centrum of QD (D0) i.e. binding energy of the D0

for particular case of spherical CdTe core surrounded by
ZnTe.
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2. Theory

The D0 centre in semiconductor spherical quantum dot
can be described as a system composed of an electron and
a positively charged donor impurity located at the centre
of the spherical potential well region. A single quantum
dot embedded in a matrix material is considered. The
validity of the effective mass approximation is assumed.
Difference of the electron effective masses [6–9] and di-
electric constants [10] between the QD region and the
surrounding medium are considered.

Considering that electron spectra is mainly formed by
size quantization, the stationary Schrödinger equation for
D0 in the approximation of the effective mass has the
form(
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is the effective mass of an electron of the heterosystem.
In this case m∗

1 is effective mass of CdTe, m∗
2 is effective

mass of ZnTe, Table [11].
The potential energy of interaction of an electron with

ion which is located at the center of QD has the form [10]
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The confinement potential is given as

U (r) =

{
−U1, r < r0,

0 r ≥ r0
U1 > 0 . (4)

We assigned a potential energy of zero outside CdTe
core. U1 is barrier height of 670 meV for the elec-
tron [12, 13, 14], εi are the corresponding static dielectric
constant, Table.

Scheme of the potential energy at r0 = 3.76 nm is
presented in Fig. 1.
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Fig. 1. Potential energy U(r) + W (r) at r0 = 1, a∗B =
3.76 nm.

For spherically symmetric potential U(r) the separa-
tion of radial and angular coordinates leads to:

Ψlm(r) = Rl(r)Ylm(θ, ϕ). (5)
Rl(r) is the radial wave function, and Ylm(θ, φ) is a spher-
ical harmonic. The differential equation for the radial
function Rl(r) can be written as
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The radial function Rl(r), consist of two parts, because
it spreads through two different regions:

Rl =

{
R1

l r< r0

R2
l r ≥ r0

. (7)

Solutions must satisfy conditions Rl(r) to be regular
when r = 0 and to vanish sufficiently rapidly when
r →∞.

For r < r0 and energy range 0 > E > U0, intro-
ducing α2

1b = 2m1(E + U0)/~2 > 0, ξ = α1br, β1 =
m1e

2/ε1~2α1b, and R(ξ) = ξ−1F (ξ), where

U0 = Z e2 ε1 − ε2

ε1ε2r0
+ U1 Z = 1 . (8)

Equation (6) becomes
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Equation (9) is the Coulomb equation which have two
linearly independent solutions Fβ1,l(ξ) and Gβ1,l(ξ).
Gβ1,l(ξ) is a singular at ξ = 0, hence the wave func-
tion of the radial part is expressed as

R1
l (α1br) = C1b

∞∑
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Al
k(β1)(α1br)k−1. (10)

C1b is the normalization constant [6].
The recurrence relation can be expressed as [6, 15]
Al

l+1(β1) = 1, (11)
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For energy range E < −U0, where α2
1a = −8m1(E +

U0)/~2, ξ = α1ar, λ1 = 2m1e2/ε1~2α1a, and R(ξ) =
ξ−1χ(ξ), the radial Schrödinger equation becomes
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Equation (14) is the Whittaker equation with two linearly
independent solutions. As the wave function has to be
finite everywhere, the solution of the radial part is

R1
l (α1ar) = C1a

1
ξ
M(λ1, l +

1
2
, α1ar). (15)

C1a is the normalization constant.

For r > r0, introducing α2
2 = −8m2E/~2, ξ = α2r,

λ2 = 2m2e
2/ε2~2α2, and R(ξ) = ξ−1W (ξ), the radial

Schrödinger equation becomes the Whittaker equation
with two linearly independent solutions. As the wave
function has to be finite everywhere, the solution of the
radial part is

R2
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, α2r). (16)

C2 is the normalization constant, M and W are Whit-
taker functions.

The solution must satisfy boundary conditions:
R1
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Equations (17) lead to a system of two linear equations
for the two unknown normalization constants. It has non-
trivial solutions only if its determinant

Dl = Dl(Enl) = 0. (18)
Once the eigenvalues Enl are determined from (18), the
linear equations can be solved yielding the coefficients to
be a function of one of them (n is solution number). The
last undetermined coefficient is determined by the nor-
malization condition. As all solutions are determined, we
can unify them to get the complete picture of eigensolu-
tions Enl and corresponding wave functions Rnl. These
calculations were performed for electrons, giving the con-
finement energies Enl and wave functions Rnl. Once the
electron wave functions are known, radial probability in
the system can give an illustrative picture of electron
spatial localization. By analogy to hydrogenic like atom
ground state, energy E10 (l = 0, n = 1) in our notation,
can be assigned as 1s and the first excited state, energy
E11 (l = 1, n = 1) in our notation, corresponds to 2p.

The binding energy Eb of a donor impurity is defined
as the difference between the energy state of the system
without impurity (Z = 0), and the energy of the corre-
sponding state of the system with impurity (Z = 1), i.e.,
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Eb(D0) = E0 − E(D0). (19)
E0 is a electron state energy for QD without impurity
and E(D0) is corresponding energy state for QD with
impurity.

3. Results

We determined ground (1s) and excited states (2p) en-
ergies using above analyses and parameters of CdTe and
ZnTe bulk materials. We used exact solution of Pois-
son equation an take into account the difference between
dielectric permittivities of QD and the matrix [10].

TABLE
Material parameters of the system: a —
lattice constant, Eg — energy gap, Ve —
conduction band offset potential, me —
electron mass

a(Å) Eg (eV) Ve (eV) m∗
e/me ε∞

CdTe 6.478 1.5 0.0999 7.1
ZnTe 6.103 2.27 0.67 0.116 6.7

The effective Rydberg R∗y = m∗
1e

4/2h2ε2
1 is the unit

of the energy, the Bohr radius ‘a∗B = h2ε1/m∗
1e

2 is the
unit of the length. For our case 1 R∗y ≈ 26.96 meV and
1 a∗B ≈ 3.76 nm.

Figure 2 presents the ground (1s) and the first excited
(2p) one-electron QD energy states without (Z = 0) and
with the impurity (Z = 1, i.e. D0), as a function of
dot radius. As seen from the Fig. 2, for Z = 0 both
energies decrease with dot radius increase and approach
asymptotically constant values. For CdTe/ZnTe, case,
1s bound level appears at r ≈ 0.3a∗B and 2p bound level
appears at r ≈ 0.65a∗B.

In D0 (Z = 1) corresponding 1s and 2p energy levels
are below Z = 0 values. In this case 1s bound level
appears at r ≈ 0.05a∗B and 2p bound level appears at r ≈
0.4a∗B. As the dot radius increase 1s energy decreases,
goes below −U1, reaches minimum at rmin ≈ 5a∗B, insert
in Fig. 2, and then slowly increases. For dot radius large
compared to rmin the energy asymptotically approaches
characteristic value −U1−R∗y. As the dot radius increase
2p energy decreases, goes below −U1 and approaches the
characteristic value −U1 − 0.25R∗y. Energy of 2p state
can have minimum. In our case there is no minimum for
2p or it is not visible in this scale. Such specific behavior
is consequence of competition of two factors: the spatial
confinement which increases the energy and presence of
the effective potential well that decrease the energy.

In Fig. 3 the binding energy of the hydrogenic impurity
is presented as a function of the CdTe/ZnTe dot radius.
As shown in this figure, the binding energies increase un-
til they reach the maximum value and then decrease till
they become approximately constant at large radii. This
behavior is consequence of the shape of Z = 1 energies
curves. When (Z = 1) solution appears, radius and QD

Fig. 2. Energy levels of ground states and first excited
states as a function of a dot radii.

volume is small, wave function spreads to the surrounding
medium. In hydrogenic impurity presence, when radius
increases (QD volume increases) energy of state decreases
rapidly. This goes until energy of state reaches approx-
imately −U1. For states below −U1, space where wave
function spreads is not dominantly determined by dot
dimension but by hydrogenic impurity potential. As a
result decrease of energy slow down, get minimum value
at characteristic dimension and it starts to increase and
asymptotically reaches constant value.

Fig. 3. Binding energy of the D0 donor impurity as the
function of radius r of CdTe/ZnTe spherical QD.

4. Conclusion

In this paper we present D0 donor in the center of
CdTe/ZnTe spherical quantum dot binding energy cal-
culation results. Ground and first excited energy state
of D0 donor are calculated. After introducing Poisson
equation solution, i.e. introducing the potential energy
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of interaction of ion with an electron in case of different
values of the dielectric permittivity of QD (CdTe) and
matrix (ZnTe), we exactly solved Schrodinger equation.

Consideration of the exact solution of the Poisson
equation allowed us to reveal an important and specific
feature of the dependence of the lowest energy states on
QD radius. It is the presence of a minimum in the lowest
states of D0 energy spectra.
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