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Thermodynamic Characteristics of 1D Structures
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In this paper 1D crystal lattice is analyzed within harmonic approximation, with one atom per elementary
cell and nearest neighbor interaction included. For this type of crystal lattice dispersion relations are well known.
Thermodynamic functions (specific heat and phonon thermal conductivity) are calculated via phonon density of
states given in exact form. Thermodynamic variables are calculated for a whole temperature range. In limiting
cases of low and high temperatures these thermodynamic variables can be found in analytic forms. For thermal
conductivity the results of Callaway model for exact phonon density of states are compared with the results of
Callaway model for Debye approximation of phonon density of states.
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1. Introduction

In this paper 1D crystal lattice with one atom per el-
ementary cell is analyzed. The nearest neighbor inter-
action within harmonic approximation is included. For
such a model the dispersion relations are well known.
Thermodynamic functions, such as specific heat of lat-
tice and phonon thermal conductivity, are expressed via
phonon density of states. In most simple cases, Einstein
and Debye approximations are used for phonon density
of states. In Einstein approximation the phonon den-
sity of states is expressed via Dirac δ function, while in
Debye approximation the phonon density of states is of
the ωd−1 type, where d is a dimension of the system.
For the assumed 1D structure, it is useful to find ther-
modynamic characteristics by applying exact relation for
phonon density of states and compare them with the
results obtained by using Debye approximation. Such
analysis of 1D structures can have both theoretical and
practical implications for Q1D structures.

2. Specific heat

We shall consider 1D crystal lattice with one atom
per elementary cell, consisting of N identical atoms of
mass m positioned on average interatomic distance a,
with interatomic forces characterized by elastic constant
γ. Within harmonic approximation the dispersion rela-
tion is well known [1]
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where ωm =
√

γ/m. By inserting dispersion relation (1)
into general expression for phonon density of states [2]
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Then, by inserting phonon density of states (3) into ex-
pression for specific heat (per elementary cell) [3]
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one obtains
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Further on, by applying substitutions x = ~ω/kBT ,
ωm = kBTxm/~, ~ωm = kBθ, xm = θ/T where θ is
Debye temperature, expression (5) is transformed into
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Expression (6) can be analytically solved for asymp-
totic low and high temperatures.

In the case of asymptotic high temperatures θ ¿ T
one obtains
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in accordance with Dulong-Petit law.
It is known empirically [4] that low-temperature de-

pendence of the specific heat has the form Cv ∼ T d. So,
it is interesting to find analytical expression for Cv at
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low temperatures in the case of 1D structures by apply-
ing exact expression for phonon density of states.

Fig. 1. Comparative presentation of specific heats.

In the case of asymptotic low temperatures θ À T it
can be shown [5] that specific heat is linear function of
temperature. By introducing function

f(x, xm) =
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the expression for specific heat can be written as

Cv = NkB(I1 + I2); I1 =
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In expressions (9), integral I2 exponentially tends to zero
when x →∞, while integral I1 becomes
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so specific heat finally obtains the form

Cv =
πNk2
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For wider temperature range the expression (6) can
be solved numerically, by adopted values of the param-
eters [6]: N = 1024, a = 4 × 10−10m, v = 3, 5 ×
103m/s, ωm = 2v

a = 1, 75× 1013 1/s, θ = 134 K.

It is interesting to compare values obtained for spe-
cific heat (6) with the values obtained for specific heat
in Debye approximation. In the case of 1D structure the
phonon density of states in Debye approximation is given
by [2]
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and in this case the specific heat can be found by numer-
ical solving of equation
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From Fig. 1 it can be seen that specific heat calculated
by using exact phonon density of states is above the one
calculated in Debye approximation.

3. Thermal conductivity

The heat conductivity tensor in most general case can
be found by using Kubo formula, which is an even corre-
lation function on the operator of heat flux. In the first
approximation, finding of the heat conductivity tensor
can be reduced on solving Boltzmann transport equation.

In analysis of experimental data for heat conductiv-
ity of crystal lattice Callaway model is most frequently
used [6], which takes into account various relaxation
phonon processes. In this model for 3D case [9] a lot
of approximations are made, restricting its application
to low-temperature range:

1. Debye approximation for describing phonon spectra
is used.

2. Only mean sound velocity is taken into account.

3. Phonon scattering on the surface is diffused (not
mirror-like).

4. Normal tree-phonon scattering processes are real-
ized for low frequency longitudinal phonons.

5. Relaxation time of U-processes is described simi-
larly to relaxation time of normal processes.

6. Relaxation times of various relaxation phonon pro-
cesses are considered additive.

7. Neither crystal anisotropy nor phonon polarization
is not taken into account (difference between longi-
tudinal and transversal phonons is not made).

In the case of 1D structure, we are starting from the ex-
pression for thermal conductivity (per unit volume) ob-
tained from kinetic theory [7]
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where vs is phonon mean velocity, and τ is phonon re-
laxation time, which is a function of temperature and
frequency.

Specific heat is given by expression (5), while phonon
relaxation time has the form [6]

τ−1(T, ω) =
vs

L
+ Aω4 + BT 3ω2. (15)

First term represents phonon relaxation time due to scat-
tering on boundaries, second term represents phonon re-
laxation time due to scattering on dopants, and third
term represents phonon relaxation time due to phonon-
phonon scattering.
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If we adopt substitution x = ~ω/kBT , expression (14)
on the basis of (5) and (15) becomes
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where
D = A(kBT/~)4, E = BT 3(kBT/~)2. (18)
In the limiting case the expression for thermal conduc-

tivity can be found in analytic form. In the limit of high
temperatures when θ << T , one obtains

κ =
2NkBLvs

3πθ
T. (19)

In the limit of low temperatures when θ >> T , expres-
sion (17) tends to zero. This means that contribution to
thermal conductivity is negligible when phonon energy is
much higher than kBT [8].

In the general case, the expression for thermal conduc-
tivity in wide temperature range can be found numeri-
cally.

The adopted values of the parameters are A = 2.57×
10−44 s3, B = 2.77× 10−23 s/K, L = 1.8× 10−3 m while
other parameters are the same as in previous part.

If thermal conductivity is calculated by using Debye
approximation for phonon density of states, one obtains
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Numerically calculated thermal conductivities are pre-
sented in Fig 2.

Fig. 2. Comparative presentation of thermal conduc-
tivities.

From Fig. 2 it can be seen that thermal conductivities,
calculated in Debye approximation and by using exact
phonon density of states, respectively, are surprisingly
compatible, which suggests that relaxation processes are
dominating in thermal conductivity and that influence of
phonon density of states is not so significant, and hence
in this case Debye approximation is quite correct.

All numerical calculations were done by using program
package Mathematica 7.0.

4. Conclusion

In the case of most simple 1D structures, specific heat
calculated in Debye approximation is underestimated in
respect to that one calculated for the exact phonon den-
sity of states. On the other hand, thermal conductivities
calculated in these two cases are surprisingly compati-
ble, which suggests that influence of phonon density of
states is not so significant and that relaxation processes
are dominating in thermal conductivity. In further re-
search, this idea will be examined on 2D and 3D struc-
tures.
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