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Algorithm for Preliminary Analysis of Viscosity Behaviour
of Some Aqueous Poly(ethylene oxide) Gels
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The dependence of the viscosity on temperature and shear rate was observed for some poly(ethylene oxide)
gels with different polymeric concentrations. An algorithm of analysis of experimental data, based on the
Arrhenius and power law models, and a mathematical function describing the dependence of the viscosity on
temperature and shear rate are proposed.

PACS: 82.70.Dd, 82.70.Gg, 82.70.Kj

1. Introduction

Some modern pharmaceutical products with applica-
tions in the treatment of the skin disease are based on
the use of the polymeric matrix as support for the medical
drugs. The advantage of such products is the possibility
to apply the active substance only in the desired area of
the skin, the prolonged time contact between the product
and the tissue and the possibility to control the delivery
rate of the active substance [1–3].

Poly(ethylene oxide) (PEO) is one of the polymers used
actually for this purpose. It is characterized by a great
affinity for water and the capacity to produce gel in aque-
ous solutions [4, 5]. The spreading capacity and the possi-
bility to remove the polymeric matrix from the skin after
use are important properties of these products, directly
correlated with the viscosity. The viscosity represents the
friction force between two adjacent layers of flow and it
is determined by the attractive forces acting between the
particles of the fluid [6]. For the polymeric systems the
viscosity is determined by the temporary or permanent
junctions between the polymeric chains. These connec-
tions reduce the free motions of the macromolecules, and
their stability is determined by the polymeric concentra-
tion, temperature and the rate of mechanical solicitation
exerted on the sample. On the macroscopic scale these ef-
fects are reflected by the dependence of the viscosity on
the temperature, concentration, and shear rate. There
are many mathematical models, Binghman, Casson and
power law, describing one or other of this dependence,
applied to simple liquids or particularly system, but a
general model, valid for a large category of samples, is
very difficult to establish [6, 7]. Usually for a given sam-
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ple, a particularization of the known models is requested.
Islam et al. and Kim et al. described the dependence
of the viscosity versus shear rate of Carbopol by power
model, and the temperature dependence of the viscosity
by the Arrhenius law [8, 9]. Power model was used also
by Park et al. to describe the dependence of the viscosity
on the shear rate for some PEO samples [10]. Generally
each of these dependences was analyzed individually and
described by separate mathematical formula.

The aim of our work is to analyze the behavior of the
viscosity of some aqueous dispersion of PEO and to find a
single mathematical function to describe both the shear
rate and temperature dependence of the viscosity. For
this purpose we propose a particular algorithm of analyze
of experimental data recorded at different temperatures
and shear rates and we particularized two known models,
the Arrhenius and power law models, to explain the de-
pendence of the viscosity on temperature and shear rate.
These dependences are expressed by a single mathemat-
ical formula.

2. Experimental

We used the poly(ethylene oxide) PEO 750 in our
study. At low polymeric concentration, a semisolid gel is
obtained by mixing the polymer with distilled water for
3–4 h. The polymeric concentrations of the samples were
φ = 7% and φ = 9%. Homogeneous gels can be obtained
only at small polymeric concentration. Above the con-
centration 11%, a separation of phases is observed [11].
We measured the viscosity of these samples at different
rotation speeds, between 0 and 200 rpm, with a Brook-
field DV II Pro viscometer. The determinations are made
in the temperature range 26–55 ◦C. The experimental er-
ror of measurements was less than 3%.
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3. Results and discussion

For these samples the viscosity is dependent on three
variables, concentration, temperature, and shear rate.
Our efforts were focused to find the contribution of each
variable to the viscosity. For this purpose we performed
two series of measurements of viscosity, at constant tem-
perature and then at constant shear rate. For the first
series of measurements we maintained the concentration
and temperature constant and we measured the viscos-
ity as function of shear rate. For each temperature and
for each polymeric concentration, the measurements were
performed in the same range of shear rate.

Fig. 1. Viscosity vs. shear rate curves, at different con-
stant temperatures, for samples with polymeric concen-
trations 7% and 9%. The parameters of the fit are:
sample φ = 7%, t = 32 ◦C, a = 1.35 Pa sn, n = 0.88;
Φ = 7%, t = 42 ◦C, a = 1.04 Pa sn, n = 0.90; sample
Φ = 9%, t = 42 ◦C, a = 3.43 Pa sn, n = 0.83; φ = 9%,
t = 50 ◦C, a = 2.92 Pa sn, n = 0.83.

For a given temperature and concentration we ob-
served a decrease of the viscosity with the increase of
shear rate (Fig. 1). This behavior is determined, on mi-
croscopic scale, by the alignment of polymeric chains, in
the direction of flow, the decrease in number of entan-
glements between polymeric chains segments and modi-
fication of the shape of the microgel particles under the
external mechanical solicitation [8]. Usually, one of sim-
plest mathematical models, Casson, Binghman, power
law, is used for preliminary analysis. In previous work
reported on PEO samples submitted to thermal degra-
dation, we observed similar variation of the viscosity on
shear rate, and we established that the best approxima-
tion of the experimental data is obtained with the power
model [11]. Similar analysis was performed with good
results by Islam et al. for carbopol [8]. The equation de-
scribing this dependence is

η = a(γ̇)n−1. (1)

η represents the viscosity, γ̇ represents the shear rate, n is
the power exponent and a is a proportionality parameter.

We used this equation to approximate the dependence on
shear rate of our experimental data. The data were ana-
lyzed with well known software Kaleidagraph and Origin.
For a given set of data there is only a single output for
the fit parameters, and the software provides the error
of data approximation. Because some of our data are af-
fected by measuring errors, we repeated the fit for all sets
of data, containing the minima and maxima error values,
and we watched the error of approximation offered by the
computer. We considered the best fit of the experimental
data the situation corresponding to the maximum rate of
approximation given by the computer. In this case the
curve traced by the computer passes almost through all
the experimental points. The error in the calculation of
parameters is less than 3% and is determined by the er-
rors of experimental data.

For instance at t = 32 ◦C and φ = 7%, the best fit of
the experimental data is obtained for n = 0.88 (Fig. 1).
For other temperatures, but in the same domain of shear
rate and for the same concentration, the variation of
the power exponent n is very small, only the parame-
ter a varies significantly. The values of these parameters
are listed in Table I. For example the variation of power
exponent n with the temperature, for sample with con-
centrations 7% represents 2.2% from its minimum value,
whereas the variation of parameter a represents 30% from
its minimum value. Similar variations can be observed
also for the sample with concentration 9% (Table I). On
the other hand, the small value of exponent (n − 1) in-
dicates little deviation from Newtonian model. Or in
Newtonian model usually the temperature dependence is
contained in the proportionality factor a. For the sake
of simplicity the interest is to find simple mathemati-
cal functions, and if possible independent function, to
express the dependences on different variables (tempera-
ture and shear rate).

TABLE I
Values of parameters a and n of power model.

φ t [◦C] a [Pa sn] n n̄

32 1.35 0.88
7% 37 1.17 0.89 0.89

42 1.04 0.90
42 3.43 0.83

9% 50 2.92 0.83 0.84
55 2.61 0.86

Taking into account the small variation of power expo-
nent n (included in the error limit of experimental data),
we can consider this parameter constant for a given con-
centration. For further mathematical analysis, at con-
stant concentration, we used the average value of n cal-
culated for many temperatures. The analyze of experi-
mental data corresponding to the sample with 9% con-
centration, reveals similar behavior, but the value of n is
different. The first conclusion resulting from this analysis
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is the independence of parameter n on the temperature
(in the domain of temperatures of our study), at con-
stant concentration. Its variation is determined mainly
by the variation of concentration. So we can consider n
a function of concentration, n(φ).

The viscosity of highly interconnected systems as the
macromolecular solutions or gels is a very complex mech-
anism that requests the adaptation of known models for
each category of molecular system and for each domain
of temperature, shear rate and concentrations. Power
model is related to the interconnected systems and the
power exponent n characterises this interconnectivity. If
this parameter depends only on concentration and not
on the temperature, this fact clearly demonstrates that
the variation of the viscosity with the shear rate is de-
termined mainly by the modification of the connections
between the polymeric chains. Modification of the con-
centration leads to a modification of degree of intercon-
nectivity between the chains. From mathematical point
of view n becomes a function of concentration. However,
in our experiments we explored a small domain of con-
centration that leads difficult the task to establish the
dependence law of power exponent n with the concentra-
tion. We can only calculate its values corresponding to
our concentrations. The best values are n = 0.89 for 7%
concentration and n = 0.84 for 9% concentration and
the best fit for some temperatures with Eq. (1) is shown
in Fig. 1.

For a given concentration and temperature Eq. (1) pro-
vides values of the parameter a independent of shear rate.
For other temperatures, but for the same concentration,
the values of parameter a obtained with Eq. (1), are dif-
ferent (Table I).

At constant concentration but at different tempera-
tures, the conformations of the polymeric chains change
due to the thermal agitation. Every change in conforma-
tion requests a quantity of energy, the activation energy,
like in the model of the potential barrier energy (often
used for liquids with simplest molecules). In the known
models, this effect is reflected by the dependence on tem-
perature of the proportionality factor a.

Taking into account our results, we can conclude that
the parameter a depends on temperature a = a(T ). If
we change the concentration, but we keep the same tem-
perature and the same domain of shear rate, we find dif-
ferent values for this parameter, i.e. a = 1.04 Pa sn for
concentration 7% at 42 ◦C and a = 3.43 Pa sn for concen-
tration 9% at 42 ◦C (Table I). From these observations we
can conclude that the parameter a is a function of tem-
perature and concentration. We can write a = a(T, φ).

Our interest is to separate the contribution of these
variables, temperature and concentration, in the math-
ematical expression of the function a(T, φ). For this
aim we measured the viscosity at constant shear rate
and constant concentration at different temperatures.
For a given concentration and rotation speed, i.e. 7%,
and 50 rpm, the viscosity decreases with the temperature,
Fig. 2. We observed the same behavior for higher rota-

tion speeds, but the values of the viscosity are smaller.
At constant rotation speed the factor (γ̇)n−1 is constant
in Eq. (1), (γ̇)n−1 = B = const, and the variation of the
viscosity is expressed only by the function a(T, φ):

η = a (T, φ) B . (2)

Fig. 2. Viscosity vs. temperature curves, at three con-
stant shear rates, for sample with polymeric concentra-
tion 7%.

Usually the dependence of the viscosity on the temper-
ature is expressed by the Arrhenius law [12]:

η = C(φ) exp
(

Ea

RT

)
B. (3)

Ea is the activation energy of the flow, R is the univer-
sal constant of the gases and C(φ) is a proportionality
factor containing the contribution of concentration. By
identification, from Eq. (2) and Eq. (3) we can write

a (T, φ) = C(φ) exp
(

Ea

RT

)
. (4)

In this equation the contributions of temperature and
concentration to the function a(T, φ) are separated. The
Ea is not known but we can calculate its value from the
Arrhenius plot of viscosity versus temperature, at con-
stant concentration.

A typical representation for the sample with concen-
tration 9% is shown in Fig. 3. We calculated the val-
ues of Ea for three different rotation speeds, 50, 100,
150 rpm, in order to observe eventual dependence of Ea

on the shear rate. For a given concentration the val-
ues of Ea calculated at these rotation speeds are very
close to each other indicating no dependence of this pa-
rameter on the shear rate. For this reason we used the
average value of Ea calculated at these rotation speeds,
Ēa = 15.4 kJ/mol for the concentration 7%. Similar be-
havior was observed for the concentration 9%, but the
value of Ea is different, Ēa = 17.0 kJ/mol. These values
are listed in Table II. Now we can describe the variation of
a(T, φ) with the temperature by introducing the average
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Fig. 3. Arrhenius plot of viscosity data, at three con-
stant shear rates, for sample with polymeric concen-
tration 9%. The values of activation energy result-
ing from this plot are: Ea = 18.0 kJ/mol at 50 rpm,
Ea = 16.8 kJ/mol at 100 rpm, Ea = 16.2 kJ/mol at
150 rpm.

values of Ea in Eq. (4). Combining the two dependences,
on temperature, Eq. (4), and shear rate, Eq. (1), we can
write a new equation for the viscosity

η (φ, T, γ̇) = C(φ) exp
(

Ea(φ)
RT

)
(γ̇)n−1

. (5)

This equation describes in a single mathematical for-
mula the dependence of viscosity on temperature, con-
centration and shear rate. The contribution of shear rate
is contained in the power factor. The contributions of
concentration is contained in the functions C(φ), n and
Ea and the contribution of temperature in the exponen-
tial factor. Although this equation was obtained from
separate analysis of the dependence of viscosity on tem-
perature and shear rate, its utility results from the possi-
bility to approximate the experimental data whenever the
temperature, concentration or shear rate, are variable.

TABLE II
Values of parameters C(φ) and Ea in Eqs. (3) and (5).

φ
t

[◦C]
C(φ)

[Pa sn]
a

[Pa sn]
C̄

[Pa sn]
Ēa

[kJ/mol]
n̄

32 0.0030 1.26
7% 37 0.0029 1.14 0.0029 15.4 0.89

42 0.0028 1.04
42 0.0051 3.37

9% 50 0.0051 2.87 0.0051 17.0 0.84
55 0.0051 2.60

We have shown already that n and Ea are constant for
a given concentration. When we analyze the dependence
of the viscosity on shear rate, for a given temperature,

at constant concentration, the function C(φ) must be
constant. To verify this supposition, we used the aver-
age values of Ea and n calculated at constant concentra-
tion, and we analyzed the variation of experimental data
η(T, γ̇) as function of shear rate, with Eq. (5). The val-
ues of parameter C(φ) resulting from this fit are listed
in Table II for both concentrations. We found that C(φ)
is practically constant for all the temperatures and shear
rates, at constant concentration. Further we considered
only its average value (Table II). Its value changes with
the concentration. This result confirms again the suppo-
sition that C(φ) is a function of concentration. The fit
of experimental data with Eq. (5) for concentration 9%
is shown in Fig. 4, and for concentration 7% in Fig. 5.

Fig. 4. Fit with Eq. (5) of experimental data represent-
ing the variation of the viscosity vs. shear rate, at dif-
ferent constant temperatures, for the sample with poly-
meric concentration 9%. The parameters of the fit are:
at t = 42 ◦C, C(φ) = 0.0051 Pa sn, Ea = 17.0 kJ/mol,
n = 0.84; at t = 50 ◦C, C(φ) = 0.0051 Pa sn,
Ea = 17.0 kJ/mol, n = 0.84; at t = 55 ◦C, C(φ) =
0.0051 Pa sn, Ea = 17.0 kJ/mol, n = 0.84.

We calculated also the values of parameter a(T, φ) with
Eq. (4) and the average values of Ea and C(φ) (Table II).
The maximum error in the calculation of this parameter
is 5%, determined by the use of average values of parame-
ters Ea and n to calculate C(φ) with Eq. (5). The values
of parameter a(T, φ) calculated by this way are very close
(in the limit of the error analysis) to the values resulting
from the direct fit of data with Eq. (1) and reported in
Table I.

In Eq. (1) the parameter a represents a free parameter
without any constraint imposed by a given mathemat-
ical function (depending on different physical variables,
concentration, temperature, shear rate). It can have any
values, in order to approximate as well as possible the
experimental data, but in this case, its physical mean-
ing is not relevant. The situation is different in Eq. (4),
where this parameter is correlated with the temperature
and concentration. Although its values are little differ-
ent from those calculated directly (Table I), its physical
meaning is more realistic because its dependence on tem-
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Fig. 5. Fit with Eq. (5) of experimental data represent-
ing the variation of the viscosity vs. shear rate, at dif-
ferent constant temperatures, for the sample with poly-
meric concentration 7%. The parameters of the fit are:
at t = 32 ◦C, C(φ) = 0.0030 Pa sn, Ea = 15.4 kJ/mol,
n = 0.89; at t = 37 ◦C, C(φ) = 0.0029 Pa sn,
Ea = 15.4 kJ/mol, n = 0.89; at t = 42 ◦C, C(φ) =
0.0028 Pa sn, Ea = 15.4 kJ/mol, n = 0.89.

perature and concentration is expressed by a mathemat-
ical function constructed on the basis of known physical
models. The main advantage of Eq. (5) is the possi-
bility to separate the contribution of different variables
(shear rate, concentration, temperature) to the viscos-
ity. A separation of contribution of each variable allows
a better explanation of the mechanism governing the vis-
cosity. A function depending only on concentration can
be easier correlated with the interconnected character
of the system (the existence of the temporary or per-
manent junctions between the particles of the system);
a function depending on temperature is easy correlated
with the barrier energy potential model. In this way our
equation can be helpful to the study of the polymeric
flow. It represents a preliminary approximation of the
polymeric viscosity applied to a limited domain of tem-
perature, concentration and shear rate, for category of
samples close to our system. Wide use of this equation
imposes the analysis of a large category of systems and
a wide domain of variations of physical parameters, tem-
perature, shear rate, concentration.

4. Conclusions

Measurements performed on aqueous PEO samples
show a dependence of the viscosity on three variables,
temperature, concentration, and shear rate. This depen-
dence is analyzed on the basis of the Arrhenius and power
model. A particular algorithm of mathematical analysis
of experimental data allows a separation of the contri-
bution of each variable to the viscosity. Such separation
allow a better correlation between the mechanisms gov-
erning the flow (local modification of the conformation
of polymeric chain or modification of the interconnec-
tions between the polymeric chains) and the variation of
viscosity. These contributions are included into a single
mathematical formula. The experimental data can be
well approximated with this formula.
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