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Low-Temperature Properties of the Quantum Heisenberg
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We consider the quantum Heisenberg antiferromagnet in a magnetic field on two one-dimensional lattices
containing equilateral triangles (a chain of corner-sharing double tetrahedra and a frustrated three-leg ladder)
which support localized-magnon states. By mapping of the localized-magnon degrees of freedom on a classical
lattice gas we obtain high-field thermodynamic quantities of the models at low temperatures.

PACS: 75.10.Jm, 75.40.Gb

1. Introduction

Recently it has been shown how the low-temperature
thermodynamics of a large class of geometrically frus-
trated quantum Heisenberg antiferromagnets in mag-
netic fields can be studied using the concept of localized-
-magnon states [1], for a review see Ref. [2]. For this class
of models the lowest-energy states in the one-magnon
subspace are the so-called localized-magnon states, i.e.,
the spin excitations above the fully polarized ferromag-
netic state are localized on a small part of the lattice
(trapping cell). Moreover, independent (isolated) lo-
calized magnons are the lowest-energy states in many-
-magnon subspaces. Their degeneracy can be calculated
by mapping on corresponding classical lattice gases and,
as a result, the contribution of localized magnons to ther-
modynamics can be estimated. In extension to these
previous studies we consider here lattices with triangu-
lar traps, which have not been considered so far. As it
is shown below, such triangular traps may produce new
features, since the localized-magnon state trapped on a
triangle possesses an extra degree of freedom, namely
the chirality. Thus, an extra degeneracy of indepen-
dent localized-magnon states becomes relevant for the
low-temperature physics.

2. The model

To be specific, we consider the standard quantum
(s = 1/2) Heisenberg antiferromagnet with the Hamil-
tonian

H =
∑

(nm)

Jnmsn · sm − hSz, Sz =
∑

n

sz
n (1)

on the two one-dimensional lattices shown in Fig. 1 (see,
e.g., Refs. [3, 4]). The first sum in (1) runs over neighbor-
ing sites, the second sum in (1) runs over all N lattice
sites. Jnm > 0 acquires two values: J2 along equilat-
eral triangles (bold bonds in Fig. 1) and J1 along all
other bonds (thin bonds in Fig. 1). h ≥ 0 is the exter-
nal magnetic field. We introduce the number of cells N
which equals N/4 for the double tetrahedra chain and
N/3 for the frustrated three-leg ladder. In what follows
we construct the ground states in the subspaces with 0 ≤
n ≤ nmax magnons (i.e., for N/2 − nmax ≤ Sz ≤ N/2),
where nmax = N for the double tetrahedra chain and
nmax = N/2 for the frustrated three-leg ladder. Further-
more, we calculate the degeneracy of ground states gN (n)
in these subspaces and, as a result, obtain the thermody-
namic quantities for both spin models in low-temperature
strong-field regime.

3. Many-magnon states

We begin with the one-magnon subspace. We find that
the twofold degenerate and completely dispersive (flat)
one-magnon band ε1,2(κ) = −J1 − 3J2/2 (double tetra-
hedra chain) or ε1,2(κ) = −3J1−3J2/2 (frustrated three-
-leg ladder) becomes the lowest-energy one if J2 > 2J1.
Then the saturation field h1 is given by h1 = −ε1,2(κ).
The corresponding eigenstates (localized magnons) are
located along one of N triangles and they have the en-
ergy EFM−h1, where EFM is the energy of the ferromag-
netically polarized state. The twofold degeneracy comes
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Fig. 1. Double tetrahedra chain (a) and frustrated
three-leg ladder (b). Exchange integrals acquire two
values: J2 > 0 along equilateral triangle sides (bold)
and J1 > 0 along all other bonds (thin).

from the chirality of the triangles.
Next we pass to the n-magnon subspace with 1 < n ≤

nmax. A many-magnon state which consists of n local-
ized magnons located on different triangular traps (dou-
ble tetrahedra chain) or on different but not neighbor-
ing triangular traps (frustrated three-leg ladder) is the
lowest-energy state in the n-magnon subspace with the
energy EFM − nh1. Importantly, we can easily count
the ground-state degeneracy in the n-magnon subspace
gN (n). We find gN (n) = 2nCn

N (double tetrahedra chain)
or gN (n) = 2nZ(n,N ), where Z(n,N ) stands for the
canonical partition function of n hard dimers on a sim-
ple chain of N sites (frustrated three-leg ladder). Let us
note that the factor 2n appears in gN (n) due to the chi-
rality of the triangles (compare with the results for the
diamond chain and frustrated two-leg ladder [5]).

4. Thermodynamics

Considering the case when a magnetic field h is present
we find that the independent localized-magnon states are
the lowest-energy states having the energy EFM−hN/2−
n(h1 − h) and the degeneracy gN (n). Due to their huge
degeneracy the localized-magnon states yield the domi-
nant contribution to the partition function of the spin
model (1) at low temperatures T and high fields h ≈ h1,
i.e., Z(T, h, N) ≈ Zlm(T, h, N), where

Zlm(T, h, N) =
nmax∑
n=0

gN (n)e−
EFM−h N

2 −n(h1−h)
T

= e−
EFM−h N

2
T Ξ (T, µ,N ) ; µ = h1 − h . (2)

(We set kB = 1.) The sum in Eq. (2) can be easily
evaluated for both lattices: Ξ (T, µ,N ) = (1 + 2eµ/T )N
(double tetrahedra chain) and Ξ (T, µ,N ) = λN1 + λN2 ,
λ1,2 = 1/2±

√
1/4 + 2eµ/T (frustrated three-leg ladder).

Based on this result the thermodynamic quantities can
be easily calculated from the free energy Flm(T, h,N) =
−T ln Zlm(T, h, N). For example, the specific heat is
given by Clm(T, h, N) = −T∂2Flm(T, h, N)/∂T 2.

In Fig. 2 we compare the temperature dependence of
localized-magnon contribution Clm(T, h, N) of the spe-
cific heat (lines) and specific heat of the full model

Fig. 2. Specific heat for the double tetrahedra chain
and frustrated three-leg ladder which consist of N = 4
cells for small deviations from the saturated magnetic
field h = 0.98h1 and h = 1.02h1. Here J1 = 1 and
J2 = 5 and hence h1 = 17/2 (double tetrahedra chain)
or h1 = 21/2 (frustrated three-leg ladder). Exact diago-
nalization data are shown by symbols, localized-magnon
predictions are shown by lines.

C(T, h, N) at h = 0.98h1 and h = 1.02h1 for finite
chains (symbols). To perform exact diagonalizations we
use the ALPS package [6]. The specific heat shows a
well-pronounced low-temperature maximum due to the
localized magnons. Obviously the elaborated approach
reproduces perfectly well the low-temperature behavior
of the specific heat thus illustrating the dominant role of
the localized-magnon contribution to thermodynamics at
low T and h around h1.

5. Outlook

Several remarks are in order here. First, the consid-
ered spin models, in principle, may have solid-state re-
alizations, see, e.g., Refs. [7, 8]. Second, for the anti-
ferromagnetic Heisenberg frustrated three-leg ladder it is
also possible to take into account a substantial part of
low-lying excited states [9]. Third, one may add to spin
Hamiltonian (1) small extra terms which remove the de-
generacy due to the chirality. Manipulation with chiral-
ity attracts much interest nowadays [10–12]. Fourth, the
elaborated scheme may be applied to the Hubbard model
on the lattices shown in Fig. 1, see Refs. [13–15]. These
issues will be discussed in an extended publication.
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