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We consider the quantum Heisenberg antiferromagnet in a magnetic field on two one-dimensional lattices
containing equilateral triangles (a chain of corner-sharing double tetrahedra and a frustrated three-leg ladder)
which support localized-magnon states. By mapping of the localized-magnon degrees of freedom on a classical
lattice gas we obtain high-field thermodynamic quantities of the models at low temperatures.
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1. Introduction

Recently it has been shown how the low-temperature
thermodynamics of a large class of geometrically frus-
trated quantum Heisenberg antiferromagnets in mag-
netic fields can be studied using the concept of localized-
-magnon states [1], for a review see Ref. [2]. For this class
of models the lowest-energy states in the one-magnon
subspace are the so-called localized-magnon states, i.e.,
the spin excitations above the fully polarized ferromag-
netic state are localized on a small part of the lattice
(trapping cell). Moreover, independent (isolated) lo-
calized magnons are the lowest-energy states in many-
-magnon subspaces. Their degeneracy can be calculated
by mapping on corresponding classical lattice gases and,
as a result, the contribution of localized magnons to ther-
modynamics can be estimated. In extension to these
previous studies we consider here lattices with triangu-
lar traps, which have not been considered so far. As it
is shown below, such triangular traps may produce new
features, since the localized-magnon state trapped on a
triangle possesses an extra degree of freedom, namely
the chirality. Thus, an extra degeneracy of indepen-
dent localized-magnon states becomes relevant for the
low-temperature physics.

2. The model

To be specific, we consider the standard quantum
(s = 1/2) Heisenberg antiferromagnet with the Hamil-
tonian

H= Z JnmSn - Sm — hS*, S? :Zsfl (1)

(nm) n
on the two one-dimensional lattices shown in Fig. 1 (see,
e.g., Refs. [3, 4]). The first sum in (1) runs over neighbor-
ing sites, the second sum in (1) runs over all N lattice
sites. Jnm > 0 acquires two values: Jy along equilat-
eral triangles (bold bonds in Fig. 1) and J; along all
other bonds (thin bonds in Fig. 1). h > 0 is the exter-
nal magnetic field. We introduce the number of cells A/
which equals N/4 for the double tetrahedra chain and
N/3 for the frustrated three-leg ladder. In what follows
we construct the ground states in the subspaces with 0 <
N < Nmax magnons (i.e., for N/2 — npax < 5% < N/2),
where npyax = N for the double tetrahedra chain and
Nmax = N /2 for the frustrated three-leg ladder. Further-
more, we calculate the degeneracy of ground states gar(n)
in these subspaces and, as a result, obtain the thermody-
namic quantities for both spin models in low-temperature
strong-field regime.

3. Many-magnon states

We begin with the one-magnon subspace. We find that
the twofold degenerate and completely dispersive (flat)
one-magnon band e12(k) = —J; — 3J2/2 (double tetra-
hedra chain) or €1 2(k) = —3J1 —3J2/2 (frustrated three-
-leg ladder) becomes the lowest-energy one if Jo > 2J5.
Then the saturation field hy is given by hy = —e1 2(K).
The corresponding eigenstates (localized magnons) are
located along one of A triangles and they have the en-
ergy Epyn — hi, where Egyy is the energy of the ferromag-
netically polarized state. The twofold degeneracy comes
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Fig. 1.
three-leg ladder (b). Exchange integrals acquire two
values: J2 > 0 along equilateral triangle sides (bold)
and J; > 0 along all other bonds (thin).

Double tetrahedra chain (a) and frustrated

from the chirality of the triangles.

Next we pass to the n-magnon subspace with 1 < n <
Nmax- A many-magnon state which consists of n local-
ized magnons located on different triangular traps (dou-
ble tetrahedra chain) or on different but not neighbor-
ing triangular traps (frustrated three-leg ladder) is the
lowest-energy state in the n-magnon subspace with the
energy Fpy — nhi. Importantly, we can easily count
the ground-state degeneracy in the n-magnon subspace
gn(n). We find gar(n) = 2"Cy, (double tetrahedra chain)
or gny(n) = 2"Z(n,N), where Z(n,N) stands for the
canonical partition function of n hard dimers on a sim-
ple chain of NV sites (frustrated three-leg ladder). Let us
note that the factor 2" appears in gar(n) due to the chi-
rality of the triangles (compare with the results for the
diamond chain and frustrated two-leg ladder [5]).

4. Thermodynamics

Considering the case when a magnetic field h is present
we find that the independent localized-magnon states are
the lowest-energy states having the energy Fpy—hN/2—
n(hy — h) and the degeneracy gpr(n). Due to their huge
degeneracy the localized-magnon states yield the domi-
nant contribution to the partition function of the spin
model (1) at low temperatures T and high fields h ~ hq,
ie., Z(T,h,N) =~ Zjn, (T, h, N), where

n a
g EFM*}"%*"(}H*’L)
et i 0

Zin(T,h,N) = > gu(n)e
n=0

_Frm *h%

=e ™ (T, u,N); p=hi—h. (2)
(We set kg = 1.) The sum in Eq. (2) can be easily
evaluated for both lattices: = (T, u, N) = (1 + 2e#/T)N
(double tetrahedra chain) and (T, u, N) = MV + XY,
A2 =1/244/1/4+2e#/T (frustrated three-leg ladder).
Based on this result the thermodynamic quantities can
be easily calculated from the free energy Fi,(T,h,N) =
—T'In Z1,n(T,h,N). For example, the specific heat is

given by Cim(T, h, N) = —~T9?Fy (T, h, N)/T?.
In Fig. 2 we compare the temperature dependence of
localized-magnon contribution Ciy, (T, h, N) of the spe-
cific heat (lines) and specific heat of the full model
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Fig. 2. Specific heat for the double tetrahedra chain

and frustrated three-leg ladder which consist of N' = 4
cells for small deviations from the saturated magnetic
field h = 0.98h; and h = 1.02h;. Here J; = 1 and
Jo = 5 and hence hy = 17/2 (double tetrahedra chain)
or hy = 21/2 (frustrated three-leg ladder). Exact diago-
nalization data are shown by symbols, localized-magnon
predictions are shown by lines.

C(T,h,N) at h = 0.98h; and h = 1.02h; for finite
chains (symbols). To perform exact diagonalizations we
use the ALPS package [6]. The specific heat shows a
well-pronounced low-temperature maximum due to the
localized magnons. Obviously the elaborated approach
reproduces perfectly well the low-temperature behavior
of the specific heat thus illustrating the dominant role of
the localized-magnon contribution to thermodynamics at
low T and h around h;.

5. Outlook

Several remarks are in order here. First, the consid-
ered spin models, in principle, may have solid-state re-
alizations, see, e.g., Refs. [7, 8]. Second, for the anti-
ferromagnetic Heisenberg frustrated three-leg ladder it is
also possible to take into account a substantial part of
low-lying excited states [9]. Third, one may add to spin
Hamiltonian (1) small extra terms which remove the de-
generacy due to the chirality. Manipulation with chiral-
ity attracts much interest nowadays [10-12]. Fourth, the
elaborated scheme may be applied to the Hubbard model
on the lattices shown in Fig. 1, see Refs. [13-15]. These
issues will be discussed in an extended publication.
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