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In this paper a theoretical study of a possible phase transition in dilute 3He–He(II) mixtures is presented
using the Galitskii–Migdal–Feynman formalism. The effective scattering length is calculated from the Galitskii–
Migdal–Feynman T -matrix, which is essentially the effective scattering amplitude dependent on the medium.
It is found that at very low 3He concentrations the s-wave effective scattering length for 3He–He(II) varies
discontinuously from positive to negative values at some critical concentration. This indicates a crossover from a
regime with dimers to another with the Cooper pairs. The binding energy of the weakly-bound dimers 3He2 is
computed. The effective p-wave scattering lengths are calculated and compared to the effective s-wave scattering
lengths at low and high concentrations. It is found that p-scattering has an important effect on the instability of
these mixtures at concentrations x > 1%. Finally, the transport coefficients are computed and compared to the
theoretical predictions of Fu and Pethick and the experimental results of König and Pobell.

PACS: 67.60.−g, 67.60.G−, 67.60.Fp

1. Introduction
3He–He(II) mixtures are interesting systems for sev-

eral reasons. On the one hand, they are widely used
as refrigerants for cooling purposes down to the mK
range [1]; recent efforts for developing cycles which use
liquid 3He–4He mixtures as the working fluid indicate
that these could be more efficient than dilution refrigera-
tion cycles [2]. On the other hand they are model systems
for testing theories of weakly-interacting fermions. Be-
sides, they constitute “natural laboratories” for studying
properties of matter in an extremely pure environment,
where most of the unavoidable disturbances present at
higher temperatures are almost completely “frozen out”.

At temperatures smaller than the Fermi degeneracy
temperature (≈ 0.1 K at zero pressure), 3He–He(II)
mixtures are dilute weakly-interacting neutral many-
-fermionic systems. This is because of the negligible
number density of Bose-type excitations (phonons and
rotons) under these circumstances, and the dominance of
the 3He quasiparticles [3, 4]. 3He–He(II) mixtures have
an additional degree of freedom, which is the 3He con-
centration. This enables us to study the density effect on
various properties.

The basic phenomenological theory for dilute
3He–He(II) mixtures is that of Landau and Pome-
ranchuk [5]. According to this theory, 3He quasiparticles
interact with each other so weakly that the systems
behave as almost ideal Fermi gases. A major theoretical
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development was the semi-phenomenological approach
of Bardeen et al. [6]. These authors predicted the
existence of a supermobility state — characterized by
the 3He atoms moving in the 4He-background with an
exceedingly long mean free path and without friction.

On the purely microscopic level, there has been
the variational track — including the correlation-basis-
-functions theory [7]; and the perturbative track — in-
cluding the Galitskii–Migdal–Feynman (GMF) and the
Brueckner–Bethe–Goldstone (BBG) frameworks [8]. The
perturbative track offers greater elegance and formal
power; on the other hand, variational calculations ap-
pear to have enjoyed greater numerical success [9]. Jack-
son et al. [9] stated that “Comparisons of the two tracks
have often been [quite] uneasy”.

Al-Sugheir et al. [8] studied the effect of hole–hole scat-
tering on any possible fermion–fermion pairing in these
systems by calculating the effective relative phase shifts,
incorporating many-body effects based on both BBG and
GMF formalisms. In the GMF formalism, the s-wave
phase shift at zero relative momentum was −π and had
a cusp at the Fermi momentum; while in the BBG formal-
ism, this phase shift had zero values up to the Fermi mo-
mentum. It was concluded that, if they exist at all, 3He2
molecules in dilute 3He–He(II) mixtures will be quite
fragile; so that they could hardly exist above a certain
critical temperature, which should be below 100 µK.

The possibility of pairing between two 3He quasipar-
ticles in these mixtures raises the exciting prospect of
obtaining a new quantum fluid — namely, a Fermi su-
perfluid “suspended” in a Bose superfluid. In addition,
by “tuning” the 3He concentration x, both s-wave and
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p-wave pairing can presumably be brought into domi-
nance [10, 11]. The first calculation of the transition
temperature on the basis of an effective interaction in
momentum space was achieved by Bardeen et al. [6].
Such a transition would yield a 3He paired-fermion su-
perfluid dissolved in the already-superfluid 4He [He(II)]
boson solvent. This would give two interpenetrating su-
perfluids. Therefore, a four-fluid model would need to
be described [11]. In Ref. [10], the superfluid transition
temperatures in 3He–He(II) mixtures (the 3He concentra-
tion being more than 3%), with a repulsive interaction,
were calculated using high-order perturbation theory cor-
rections. This involved calculating the contributions of
third- and fourth-order diagrams in the gas phase and
taking into account retardation effects. Estimates of the
superfluid transition temperature for 3He in 3He–He(II)
range from 10−5–10−4 K for singlet pairing at low x,
and 10−10–10−4 K for triplet pairing at higher x [10–13].
However, no experimental evidence has yet been found
for such a transition.

In two-dimensional systems, there have been predic-
tions of a transition to superfluid behavior at low tem-
perature [13–15]. Pobell’s group [16] found no evidence
for superfluidity in 2D solutions for T ≥ 9 mK in zero
magnetic field with 3He coverage in the range 0.1–1.0
monolayer. Bashkin et al. [17] expected that in 2D 3He2
dimers may form in the limit of small 3He concentration,
and suggested that 3He2 dimers may cross over from a
Bose gas of dimers to a 2D Fermi fluid (with strong pair
correlations) upon increasing the 3He concentration. The
quantitative calculation of the dimer binding energy was
based on a semi-empirical effective interaction in which
the bare potential was the Lennard–Jones potential and
the single-particle wave functions were obtained within a
density-functional approach [17].

In this paper, the GMF formalism [18, 19] will be ap-
plied to 3He–He(II) mixtures to calculate the effective
phase shifts, which, in turn, are used to evaluate the
effective, density-dependent s-wave and p-wave scatter-
ing lengths. This formalism is suitable for 3He–He(II)
mixtures, thanks to the relatively dilute and weakly-
-interacting nature of these mixtures. From the value and
sign of scattering length, it can be determined whether
the two 3He atoms at very low temperatures prefer to
form weakly-bound dimers 3He2 or Cooper-like pairs.

The basic quantity in this formalism is the T -matrix
whose instability is an indication of the formation of
fermion pairs. This matrix includes hole–hole scattering
inside the Fermi sea as well as particle–particle scatter-
ing outside the sea. The GMF formalism has recently
been applied to both spin-polarized 3He–He(II) mixtures
and spin-polarized deuterium [20, 21]. It has been con-
cluded that hole–hole scattering plays a crucial role in
any possible fermion–fermion pairing in these systems.

The rest of the paper is organized as follows. Section 2
contains only a brief account of the GMF formalism for
3He–He(II) mixtures, since this theory is well-described
elsewhere [19]. The results are summarized and discussed

in Sect. 3. Finally, in Sect. 4, the paper closes with some
concluding remarks.

2. GMF formalism for 3He–He(II) mixtures

For a neutral Fermi system, the GMF T -matrix is given
by [19]:

T (p, p′; s, P ) = u(|p−p′|) + (2π)−3

∫
dk u(|p−k|)

× [
g0 (k, s)Q (k,P , β′)− g+

0 (k, s) Q̄ (k,P , β′)
]

×T (k, p′; s, P ) . (1)

Here p and p′ are the relative incoming and outgoing
momenta; the parameter s is the total energy of the in-
teracting pair in the center-of-mass frame and is given by

s ≡ 2 µ∗3

(
2P0 − P 2

m∗
3

)
; (2)

P0 is the total energy of the pair; P 2 is the energy car-
ried by the center of mass. Throughout this work we
use units such that ~ = 2m3 = kB = 1, kB being Boltz-
mann’s constant and m3 the mass of the 3He atom. The
operator u ≡ 2 µ∗3

~2 V ≡ b
2V , where V is the Fourier trans-

form of a static central two-body potential and µ∗3 is
the effective reduced mass of the 3He interacting pair:
µ∗3 = 1

2m∗
3 = b

2m3 and β′ = β
b , β being the inverse tem-

perature. The conversion factor is ~2
2m3

= 8.0425 K Å2.
Using our system of units, we have

s = bP0 − P 2. (3)

The operator Q (Q̄) is the product of particle–particle
(hole–hole) occupation probabilities. In momentum
space, the hole occupation probability is just the Fermi–
Dirac distribution, which reduces to the unit step func-
tion at zero temperature. When subtracted from unity,
this yields the particle-occupation probability. Q (Q̄) is
equal to one if both particles (holes) are outside (inside)
the Fermi-sea. The angle-averaged functions Q and Q̄
are given by

Q (k, β′) =
1

exp (−β′ (k2 − k2
F)) + 1

× 1
exp (−β′ (k2 − k2

F)) + 1
, (4)

Q̄ (k, β′) =
1

exp (β′ (k2 − k2
F)) + 1

× 1
exp (β′ (k2 − k2

F)) + 1
, (5)

kF being the Fermi momentum

kF =
(
3π2ρ3

)1/3
. (6)

The number density of 3He particles in 3He–He(II) mix-
tures ρ3 is given by
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ρ3 =
0.6022x

27.58 (1 + αx)

[
Å−3

]
. (7)

The factor α is the volume differential coefficient, rep-
resenting the difference between the volume occupied by
the 3He atom and that occupied by the heavier 4He atom.
Although α decreases with increasing pressure Pr, yet
as Pr increases, the background atoms become more and
more localized; so that m∗

3 becomes as large as ∼ 2.9m3

at Pr ≈ 12 atm. Table I shows α and m∗
3 at different

values of Pr [22].

TABLE I

α and m∗
3 at different values of Pr.

Pr [atm] α m∗
3/m3

0 0.30 2.33
6 0.23 2.50
9 0.21 2.70
12 0.20 2.90

The free two-body Green function g0(s) is defined as:

g0 (k, s) ≡ 1
k2 − s− iη

. (8)

The system of interacting real particles is described in
terms of weakly-interacting quasiparticles; this justifies
the use of free Green functions. The quantity η is a
positive infinitesimal in the scattering region and zero
otherwise.

The Fourier–Bessel transform of the interatomic poten-
tial was calculated using a program originally constructed
by Ghassib and coworkers for interhelium potentials [23].
The effective interaction in configuration space between
two 3He quasiparticles embedded in He(II) is the sum of
three physical effects [24]. The first is the direct 3He–3He
interaction, V33(r). To this end, one of the most highly-
-acclaimed interatomic helium potentials, the so-called
HFDHE2 [25, 26], has been used. The second effect is
the induced interaction between the 3He atoms and the
He(II) background, V34(r). The third effect is associated
with the induced 4He–4He interaction, V44(r). The total
effective interatomic potential between two 3He atoms is,
therefore,

V (r) = V33(r) + V34(r) + V44(r) . (9)

The effective phase shifts can be determined by pa-
rameterizing the on-energy-shell T -matrix, computed by
putting p = p′ =

√
s, as follows [19]:

T` (p, p; s, P, β′) ≡ T` (p;P, β′) ,

T` (p;P ; β′)

= −4π

p

exp
(
iδE

` (p; P, β′)
)
sin

(
δE
` (p; P, β′)

)

Q (p; P, β′) + Q̄ (p; P, β′)
; (10)

so that

tan
(
δE
` (p;P, β′)

) ≡ ImT` (p; P ;β′)
ReT` (p; P ;β′)

. (11)

ImT`(p; P ;β′) and ReT`(p; P ;β′) denoting, respectively,
the imaginary and real parts of T`(p; P ; β′).

The effective `-wave scattering length a` at low energy
is defined as [27, 28]:

a2`+1
` ≡ − lim

k→0

tan
(
δE
` (k)

)

k2`+1
. (12)

The word “effective” indicates that the quantities in-
volved pertain to a many-body medium; they depend on
the density, temperature and pressure.

The sign of the scattering length determines the overall
repulsive or attractive nature of the interaction: a pos-
itive scattering length corresponds to an effective repul-
sive interaction; whereas a negative scattering length rep-
resents an effective attractive interaction. If the effective
attraction is made more and more attractive, the effective
scattering length becomes larger and larger in absolute
value; then the sign of the scattering length will change
from large negative to large positive. This change is re-
lated to the generation of bound states. Increasing the
attraction further causes the scattering length to decrease
in magnitude [27].

The question of how a phase transition manifests it-
self in 3He–He(II) mixtures depends strongly on the mi-
croscopic structure. Fermions in a cold Fermi gas tend
to form diatomic molecules (dimers) when the scatter-
ing length a0 À 0 [29]; the ground state in this case is
a Bose–Einstein condensate (BEC) of dimers. If a0 < 0,
the fermions prefer to form Cooper-like pairs; the ground
state in this case is a condensate of the Cooper pairs.

3. Results and discussion

The effective s- and p-wave scattering lengths for
3He–He(II) mixtures were calculated from Eq. (12) as
a function of 3He-concentration x at different values of
pressure Pr. The GMF T -matrix, regarded here as our
effective interaction in momentum space, was determined
by a matrix-inversion technique, as in previous work [19].
In Gaussian quadrature, a 96-point mesh was used. This
was large enough to give “stable” and accurate results.

3.1. s-wave scattering

Tables II–VI show the effective s-wave scattering
length a0 as a function of x at different values of Pr.
The behavior of a0 is as follows: at very low x, a0 is
positive. By increasing x, the value of a0 increases until
it reaches a maximum at some critical concentration xc.
A further increase in x causes the sign of a0 to change
from large positive to large negative and then to nega-
tive values. This behavior of a0 is expected in quantum
mechanics [28], since the effective attractive interaction
decreases by increasing x. The sign change resulting from
increased attraction is related to the generation of bound
states. Our results show that the 3He dimer regime oc-
curs when x ≤ xc where a0 À r0, r0 is the effective
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range of the potential ≈ 2.45 Å. At x > xc, the effec-
tive interaction is less attractive, a0 < 0, i.e., we have an
overall weak attractive potential. The magnitude of a0

decreases with increasing x, thanks to increasing repul-
sive many-body effects. Then, the two fermions prefer to
form Cooper-like pairing.

TABLE II

a0 for different x at zero-external pressure Pr.

x a0 [Å]
free-scattering limit 12.34

0.01% 35.9
0.02% 58.5
0.04% 422.6
0.05% −94.8
0.1% −41.2
0.5% −9.9
1% −7.4

TABLE III

a0 for different x at external pressure Pr = 6 atm.

x a0 [Å]
free-scattering limit 11.87

0.01% 32.7
0.02% 50.8
0.04% 194.1
0.05% −120.2
0.1% −46.7
0.5% −10.1
1% −7.6

TABLE IV

a0 for different x at external pressure Pr = 9 atm.

x a0 [Å]
free-scattering limit 9.43

0.01% 19.7
0.02% 25.6
0.04% 36.9
0.05% 70.1
0.10% 1598.3
0.15% −72.1
0.20% −34.7
0.30% −22.4
0.50% −12.9
1% −8.97

From Table VI, it is noted that a0 decreases with in-
creasing Pr at low x (x < xc), and a0 increases in mag-
nitude with increasing Pr at high x (x > xc). This is
because as Pr increases α decreases, and hence the min-
imum and the long-range part of the effective potential

TABLE V

a0 for different x at external pressure Pr = 12 atm.

x a0[Å]
free-scattering limit 7.91

0.01% 13.90
0.02% 16.48
0.04% 20.58
0.05% 29.30
0.1% 48.95
0.15% 166.8
0.2% −109.4
0.3% −39.93
0.5% −17.25
1% −10.83

TABLE VI
a0 as a function of x at different values of Pr.

x
a0[Å]

Pr = 0 atm Pr = 6 atm Pr = 9 atm Pr = 12 atm

free-
-scattering

limit
12.34 11.87 9.43 7.91

0.01% 35.9 32.7 19.7 13.90

0.02% 58.5 50.8 25.6 16.48

0.05% −9.9 −10.1 −12.9 −17.25
0.10% −7.4 −7.6 −8.97 −10.83

become shallower. Our results indicate that, in spite of
the decrease in the overall attraction of the effective po-
tential, the relatively large 3He effective mass makes pos-
sible the formation of 3He2 dimers in dilute 3He–He(II)
mixtures.

The binding energy of the weakly-bound 3He2 dimers,
if they exist at all, can be determined using the equation
(a0 À r0) [30]:

EB =
~2

m∗
3a

2
0

. (13)

Our results for xc and EB are summarized in
Tables VII and VIII. Table VII shows xc and the cor-
responding EB at different values of Pr. It is noted that
xc increases with increasing Pr. In Table VIII, EB is
shown at x ≤ xc for different values of Pr. The increase
of EB at the same concentration with increasing Pr is
expected, thanks to the enhanced localization of the in-
teracting 3He pair. Clearly, the 3He–3He binding in this
system is very fragile.

The question then arises: If, for argument’s sake,
molecular binding does occur in our system, how many
3He2 the molecules will result? The answer is that this
number will be so as to conform to requirements of self-
-saturation — i.e., 3He2 will continue to form until it be-
comes energetically unfavorable to further convert single
quasiparticles to molecules [31].
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TABLE VII

xc and EB at different values of Pr.

Pr [atm] xc EB [µK]
0 0.046% 38.7
6 0.046% 170.8
9 0.1% 2.33
12 0.16% 200

TABLE VIII
EB as a function of x at different values of Pr.

x
EB [mK]

Pr = 0 atm Pr = 6 atm Pr = 9 atm Pr = 12 atm

0.01% 5.36 6.04 15.33 28.7

0.02% 2.02 2.48 9.07 20.4

0.04% 0.04 1.71 4.33 13.1

0.05% no dimers no dimers 1.21 6.45

0.10% no dimers no dimers 2.33× 10−3 2.31

0.15% no dimers no dimers no dimers 0.20

Another point worth noting concerns the possibility of
clustering in the system, that is, the formation of n-mers
(n ≥ 3). Theoretical considerations [32] suggest that the
formation of trimers and higher-order clusters cost less
energy than dimers. However, this point goes beyond
the scope of the present work.

3.2. p-wave scattering

The effective p-wave scattering length a1 is displayed
in Table IX as a function of x at Pr = 12 atm. For
comparison purposes, a0 is also shown. It is noted
that both s- and p-waves are characterized by purely
attractive interactions, i.e., a0 < 0 and a1 < 0. Therefore
our system is unstable against Cooper-pair formation,
where both a0 and a1 are less than zero [33]. Clearly,
a1 has only a weak dependence on concentration.
The magnitude of a1 is in the range 3–4 Å, which
corresponds to a very weak attractive interaction. At
low x (x < 1%), the magnitude of a0 is much larger
than the magnitude of a1, which means that the effec-
tive s-wave scattering dominates the effective p-wave
scattering, i.e., p-scattering can be ignored. At higher
x (x > 1%), a0 and a1 are comparable, which means
that the effective p-wave scattering cannot be ignored;
both s-wave and p-wave pairing may then take place.
To determine which type of pairing may occur, the
singlet and triplet transition temperatures T

(s)
c and

T
(p)
c should be computed. The type of pairing which

has the higher transition temperature may take place.
It has been predicted that dilute 3He–He(II) mixtures
favor s-wave pairing at x < 3% [10, 34]. In this range
the scattering length corresponds to attraction; so that
s-wave pairing may occur. On the other hand, the
interaction tends to produce p-wave coupling at x > 3%.
Therefore the instability of our system exists thanks to
the Kohn–Luttinger mechanism at x > 3% [10, 35]. The

triplet transition temperature T
(p)
c can be calculated

using [12]:

T (p)
c = TF exp

(−5π2
/ (

8 (2 ln 2− 1) k2
Fa2

1

))
.

Our results for T
(p)
c are in the range ≈ 10−9–10−7 K, as

shown in Table X. These are comparable to the results
of [12, 36, 37].

TABLE IX

a0 and a1 for different values of x at Pr = 12 atm.

x a0 [Å] a1 [Å]
0.2% −109.4 −3.92
0.3% −39.93 −3.90
0.5% −17.25 −3.86
1% −10.83 −3.78
2% −6.93 −3.62
3% −5.63 −3.48
4% −5.17 −3.41
5% −4.8 −3.32
6% −4.49 −3.24

TABLE X

T
(p)
c for different values of x at Pr = 12 atm.

x T
(p)
c [K]

3.0% 2.16× 10−9

4.0% 3.35× 10−8

5.0% 1.60× 10−7

6.0% 4.86× 10−7

The fact remains that so far there has been no ex-
perimental evidence to the formation of a more or-
dered state in the system below some critical temper-
ature [34, 38, 39]. Further work, both experimental and
theoretical, is needed in this respect, especially at ul-
tralow temperatures and relative high pressures. In pass-
ing, we note that the above effective phase shifts can be
used to calculate the corresponding effective cross sec-
tions — including the total, diffusion and viscosity cross-
-sections [40].

3.3. Transport properties at very low temperatures

The predicted temperature dependence of Landau’s
Fermi liquid parameters, namely, the diffusion coefficient
(D ∼ T−2), the thermal conductivity (κ ∼ T−1) and the
viscosity (η ∼ T−2) at T ¿ TF, was confirmed by Ander-
son et al. [41], Abel et al. [42] and König and Pobell [43].

König and Pobell investigated 3He–4He mixtures
at 3He concentrations 0.98% ≤ x ≤ 9.5% in the tem-
perature range 1 mK ≤ T ≤ 100 mK and at pressures
0 ≤ Pr ≤ 20 bar. Their results [38, 43] showed that ηT 2

tended to a constant value below ≈ 10 mK. It was found
that ηT 2 = 1.8 × 10−9 at x = 0.98%, which was nearly
independent of the pressure.
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The transport phenomena at very low temperatures
(T ≈ 1 µK) are entirely determined by the 3He atoms
whose mean free path is limited by 3He–3He collisions.
Bashkin found the following expressions for κ, η, and D
[44, 45]:

κT = 0.021
p3
F

(m∗
3a0)

2 (1− 0.34λ) , (14)

ηT 2 = 0.0022
p5
F

(m∗
3a0)

2 (1 + 0.74λ) , (15)

DT 2 = 0.255
(
~

m∗
3

)3 (
pF

a0

)2

(1− 2.18λ) , (16)

where λ ≡ pFa0
π~ and pF = ~kF.

TABLE XI
Transport coefficients κ, η, and D for different values of x at Pr = 12 atm.

x κT [Jm−1s−1] ηT 2 [Pa s]
using Eq. (15)

ηT 2 [Pa s]
using Eq. (17)

DT 2 [m2s−1 K2]

4.0% 11.1× 10−5 3.23× 10−9 6.12× 10−9 9.44× 10−9

5.0% 16.0× 10−5

[19× 10−5]a
5.43× 10−9

[22.9× 10−9]a
10.3× 10−9

[22.9× 10−9]a
127× 10−10

[69.7× 10−10]a

6.0% 21.9× 10−5 8.42× 10−9

[27× 10−9]b,c
15.8× 10−9

[27× 10−9]b,c 1.63× 10−8

9.5% 43.1× 10−5 21.7× 10−9

[36× 10−9]c
41.8× 10−9

[36× 10−9]c
2.80× 10−8

a [47]; b [43]; c [38]

Also, η can be calculated by [45, 46]:

η =
~
π

ρ3

(3π2ρ3a3
0)

2/3

(
TF

T

)2

. (17)

Our results for κ, η [using Eqs. (15) and (17)], and D
are summarized in Table XI. This shows a comparison
of our results to the theoretical predictions of Fu and
Pethick [47] and the experimental results of König and
Pobell [38, 43]. Fu and Pethick [47] studied the concen-
tration dependence of the transport properties by using
the Bardeen, Baym and Pines (BBP) potential as a bare
interaction between two 3He atoms, then using pertur-
bation theory to calculate the scattering amplitudes as
functions of the 3He-concentration. They showed that,
although the strength of the two-particle interaction is
weak, the expansion parameter in perturbation theory is
large (≈ 0.3 for x = 1.3%). This approach leads to quite
good agreement between theory and experiment for K
and η, but is less successful in yielding agreement with
the experiments of Murdock et al. [48] for the spin dif-
fusion in 5% mixtures. It is noted that our results are
of the same order of magnitude as the theoretical pre-
dictions and experimental results. κ and D show good
agreement with the theoretical predictions [47]; whereas
η shows good agreement with the experimental results
[38, 43].

4. Conclusion

In this paper, the GMF T -matrix was used to cal-
culate the effective s- and p-wave scattering lengths for

low and high 3He-concentrations in3He–He(II) mixtures.
The basic achievements of the paper are: (1) point-
ing out the possibility of 3He dimer-pairing crossover
in these mixtures at very low concentrations; (2) cal-
culation of the binding energy of the weakly-bound 3He
dimers; (3) pointing out the possibility of p-wave pairing
at higher concentrations (x > 1%); and (4) calculation
of the triplet transition temperature and the transport
coefficients, namely, the diffusion coefficient, the thermal
conductivity and the viscosity, which are comparable to
previous theoretical predictions as well as experimental
results. For s-wave, below a critical concentration, 3He
atoms may tend to form dimers. Above this critical con-
centration, 3He atoms may form Cooper-like pairs. The
effect of the pressure is to increase both the critical con-
centration and the binding energy of 3He2 dimers.

Our results can be summarized as follows: at very
low concentration, 3He atoms tend to form diatomic
molecules (3He2 dimers). By increasing the concentra-
tion, the strength of dimer interaction becomes weaker
and weaker. Then at some critical concentration, which
depends on the external pressure, a crossover from a
regime with dimers to Cooper-pairing regime may occur.
At low concentration (x < 1%), p-wave pairing can safely
be ignored. At higher concentration (x > 1%), however,
this is not the case. It is concluded that p-scattering has
an important effect on the stability of these mixtures at
high x (x > 1%) and should not be neglected, which is
in agreement with Ref. [12].
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