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The research reported in an article previously published in this journal is pursued here further on. A staircase
profile of the graphical representation of the absolute value of the expression for Bohm-type diffusion in two
dimensions is analyzed allowing the suggestion that its shape could be related to the well-known structure of
levels of the quantized square of the guiding center radius vector and that this structure could be responsible for
the appearance of the successive steps in such a profile. When these considerations are taken into account, the
expression for Bohm-type diffusion in two dimensions is normalized according to the formula for the quantized
square of the guiding center radius vector and a diffusion coefficient whose value is 4

π
times the Bohm diffusion

coefficient is obtained for large values of the independent variable.

PACS: 51.20.+d, 52.20.Dq, 52.25.Fi, 52.25.Xz, 05.40.Jc, 42.50.Nn

1. Introduction

The diffusive motion of particles in different media is
an interesting phenomenon in several fields and its nature
has been an important subject of study. For example,
charged particles in magnetized plasmas diffuse in various
modes, among which the Bohm diffusion [1] still eludes
an explanation based on first principles.

In Ref. [2] a simple quantum mechanical model to treat
an electron with thermal energy kT in a dilute magne-
tized plasma in the presence of an electric potential is
considered; there, an expression for Bohm-type diffusion
that describes the behaviour of the mean square value
of the x component of the displacement of the guiding
center of the electron’s orbit is obtained. From this ex-
pression two coefficients of diffusion were deduced, viz.:
one of magnitude ~√

2m
, characterized by a step size com-

parable to the linear dimensions of the area of uncertainty
of the guiding center, the other being a Bohm-type co-
efficient of diffusion of magnitude ckT√

2eB
with a step size

comparable to the Larmor radius.
In the present paper, it is found that the graphical

representation of the absolute value of the expression
for Bohm-type diffusion in two dimensions presents a
staircase profile with a mean slope equal to one. The
separation between successive steps of this profile turns
out to be of the same order of magnitude as the sepa-
ration between successive levels of the well-known quan-
tized square of the guiding center radius vector. Then an
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analysis is carried out from the expression for Bohm-type
diffusion in two dimensions; from this analysis it is sug-
gested that the structure of levels of the quantized square
of the guiding center radius vector could give rise to the
series of steps present in that profile. Taking into account
these considerations, the expression for Bohm-type diffu-
sion in two dimensions is normalized according to the
formula for the quantized square of the guiding center
radius vector, to make the separation between succes-
sive steps in the graph of the normalized expression be
the same as the separation between successive levels of
the quantized square of the guiding center radius vector.
The Bohm-type coefficient of diffusion that produces this
normalized expression for large values of the independent
variable results in a quantity which is 4

π times the Bohm
diffusion coefficient.

2. Bohm-type diffusion

Let us first transcribe as Eq. (1), Eq. (39) of Ref. [2]
which is the expression for Bohm-type diffusion

〈x2
0〉 = 〈Nd〉〈ẋ2

0〉t2f(θ) . (1)

The origin of this expression is traced back to the so-
lution of a quantum mechanical equation of motion in
the quasi-classical approximation for the x component of
the displacement of the orbit’s guiding center of a single
electron with thermal energy kT in a dilute magnetized
plasma in the presence of an electrical potential that sim-
ulates an electrical fluctuation which drives the guiding
center drift. In Eq. (1) x0 is the x component of the dis-
placement of the guiding center of the electron’s, orbit,
t is the time, the symbol 〈·〉 represents the mean value

(798)
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taken in terms of quasi-classical states of the harmonic
oscillator, the dot indicates the derivative with respect
to time, 〈Nd〉 = kT

~ωc
and 〈ẋ2

0〉 = kT√
2m

(see Eq. (32) of
Ref. [2]). The function f(θ) in Eq. (1) is given by the
expression (see Eq. (24), Ref. [2]):

f(θ) =
sin2 θ

θ2
+ i

(
1
θ
− sin 2θ

2θ2

)
, (2)

where θ = Ωt
2 , Ω = ωc〈Nd〉, ωc = eB

mc is the cyclotron fre-
quency. Using the definitions given above, the variable θ
is written as kT

2h t.
The real and imaginary parts of Eq. (2) are the Hilbert

transform of each other [3] and fulfill the requisites for
a dispersion relation in the time domain (see text below
Eq. (24) of Ref. [2]).

Fig. 1. Real (symmetrical) and imaginary (antisym-
metrical) parts of the function f(θ) given by Eq. (2).

Figure 1 represents the real (symmetrical) and imagi-
nary (antisymmetrical) parts of Eq. (2). Using the defi-
nitions of θ, 〈ẋ2

0〉 and 〈Nd〉 given above, Eq. (1) may be
rewritten as follows:

〈x2
0〉 = 2

√
2
~c
eB

θ2f(θ). (3)

In order to take into account simultaneously the in-
formation contained in the real and imaginary parts
of Eq. (2), its absolute value will be used for the pur-
poses of the present paper; it is expressed as

|f(θ)| =
[

sin4 θ

θ4
+

(
1
θ
− sin 2θ

2θ2

)2
]1/2

. (4)

Then the absolute value of Eq. (3) is written as
∣∣〈x2

0〉
∣∣ = 2

√
2
~c
eB

θ2 |f(θ)| , (5)

where the expression θ2|f(θ)| is represented by the stair-
case curve 2 of Fig. (2).

3. Analysis of the staircase structure
of curve 2 in Fig. 2

The following features of curve 2 in Fig. 2 are notice-
able:

1. The staircase structure shown there is an infinite
set of steps of a ladder whose successive projections on
both axes are equidistant. The mean slope of the curve
is unity.

2. It is noticed from the figure that the value of θ2|f(θ)|
changes very slowly at the steps, causing the contribution
of θ2|f(θ)| to the diffusion of the guiding center to be very
small there.

3. Calculations show that in each step there exists a
point at which the derivative of θ2|f(θ)| takes the value
of zero.

4. Calculations show that successive zeroes of the
derivative of θ2|f(θ)| are equidistant along the directions
of the abscissa and the ordinate.

Fig. 2. Curve 3 represents the difference between
curves 1 and 2 which are described in the text.

A possible explanation for the presence of the stair-
case structure of curve 2 in Fig. 2 could rest on the fact
that the square of the radius vector of the guiding cen-
ter with respect to a given origin is quantized in a sim-
ilar fashion as is the energy of the harmonic oscillator
(see Ref. [4], page 758). Therefore, as the guiding center
diffuses, it passes through the equidistant successive lev-
els of its quantized squared radius vector in such a way
that its structure of levels modulates the motion, produc-
ing the phenomenon described by the expression θ2|f(θ)|
of Eq. (5). Thus, Eq. (5) and curve 2 of Fig. 2 keep evi-
dences of a discrete behaviour revealing the existence of
a structure of levels in the diffusion of the guiding center;
in the next section it will be seen that this structure of
levels is compatible with Eq. (6) below for the eigenvalues
of the squared radius vector of the guiding center.
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4. The eigenvalues of Γ2
n

The expression for the eigenvalues of the square of the
radius vector of the guiding center is reproduced here;
see Ref. [4], p. 758

Γ 2
n = 2

~c
eB

(
n +

1
2

)
, (6)

where ~c
eB is comparable to the uncertainty area of the

guiding center (see Eqs. (6), (7) of Ref. [2]) and n = 0, 1,
2, . . . is the corresponding quantum number. This quan-
tum number and the one for the oscillator energy take on
the same set of values (0, 1, 2, . . .) but correspond to dif-
ferent operators (see Ref. [4], pp. 754, 758). Equation (6)
expresses the concept that the square of the guiding cen-
ter radius vector is quantized and can assume any of an
infinite set of discrete stationary states. Since in the ab-
sence of an external electrical perturbation the guiding
center does not move, the quantum number n assumes
the value n = 0. However, in the presence of a perturb-
ing electric field that classically drives the guiding center
drift, the number n can take on higher values. In this
circumstance the thermal average of Eq. (6) is taken in
terms of the Boltzmann factor exp

(−En

kT

)
, where En is

the harmonic oscillator energy, i.e.:

Γ 2
nav

= 2
~c
eB

(
nav +

1
2

)
, (7)

where nav turns out to be

nav =
1

exp
(~ωc

kT

)− 1
.

For kT
~ωc

À 1, as is usual in many experiments, the last

expression is reduced to nav ≈ kT
~ωc

so that, neglecting
the term 1

2 in Eq. (7), the thermal average of Γ 2
n is now

written as

Γ 2
nav

≈ ~c
eB

kT

~ωc
=

v2
th

ω2
c

= ρ2
L, (8)

where ρL is the Larmor radius, which is the step size
in the Bohm and Bohm-type diffusion (see for example
Ref. [5] and Eq. (43), Ref. [2]). Notice that expression
(8) was achieved independently of any consideration of
the behaviour of Eq. (5) which means that in the pres-
ence of an external perturbation, the thermal average of
the “excited” squared radius vector of the guiding cen-
ter inherently assumes a value comparable to ρ2

L. On
the other hand, notice that the numerical coefficients
of Eqs. (5), (6) are of the same order of magnitude, which
could imply that the separation between the successive
“plateaus” of curve 2 depicted in Fig. 2 is related to the
separation between levels in Eq. (6). This implication
may support what was said before in the sense that the
staircase profile of curve 2 shown in Fig. 2 is generated by
the passage of the guiding center through the structure of
levels of Eq. (6); this item will be given further attention
in the following section. Now, it can be seen from curve
2 in Fig. 2 that the width of the steps is ∆θ ≈ 1; also, if

one consider that (see text below Eq. (2)) then the asso-
ciated time interval ∆t is consistent with the uncertainty
principle for time and energy since ∆θ = kT

2~∆t ≈ 1 or
(kT )∆t ≥ ~, where ∆t is the time it takes the mean
square of the guiding center radius vector to “traverse”
each plateau (level) of curve 2 in Fig. 2.

5. Analysis of Eq. (5)

The aim of this section is to obtain additional infor-
mation about the nature of Bohm-type diffusion through
the handling of Eq. (5). The symmetry of the problem of
the motion of the guiding center on the x–y plane with
the magnetic field pointing along the positive z-direction
permits the writing of a similar equation for the y coor-
dinate of the guiding center location

∣∣〈y2
0〉

∣∣ = 2
√

2
hc

eB
θ2 |f(θ)| . (9)

Therefore, considering Eqs. (5), (9), the expression for
the corresponding mean square radius vector of the guid-
ing center position is

∣∣〈x2
0〉

∣∣ +
∣∣〈y2

0〉
∣∣ =

∣∣〈r2
0〉

∣∣ = 4
√

2
~c
eB

θ2 |f(θ)| . (10)

In the following, the parenthesis part of Eq. (6) and the
function θ2|f(θ)| which appears in Eq. (10) will be graph-
ically compared in terms of the generic variable χ, consid-
ering that the eigenvalues n may be localized on certain
points of the straight line 1 of Fig. 2; on this straight line
the value n = 0 corresponds to the ordinate 1

2 .
The curves depicted in Fig. 2 are: f1(χ) = χ + 1

2 ,
f2(χ) = χ2|f(χ)|, f3(χ) = f1(χ) − f2(χ). Somewhere
on the straight line f1(χ) there are located the eigenval-
ues n = 1, 2, . . .; the eigenvalue n = 0 corresponds to
χ = 0 and represents the “zero-point squared radius vec-
tor” of Γ 2

n . However, curve 2 lacks a “zero-point squared
radius vector” different from zero because of the quasi-
-classical origin of Eq. (10), see Ref. [2], Eq. (16). It is
observed from Fig. 2 that the general trend of graphs
f1(χ) and f2(χ) is the same and that the curve f1(χ) is
slightly secant to the knees of the curve f2(χ) for small
values of χ, whence the curve f3(χ) should show small
negative values not seen under the scale chosen to draw
Fig. 2. For intermediate and high values of χ, f1(χ) is
tangent to the knees of f2(χ).

Continuing the graphical analysis, Fig. 3 shows the fol-
lowing curves drawn in terms of the generic variable χ:
f1(χ) = χ, f2(χ) = χ2|f(χ)|, f3(χ) = f1(χ) − f2(χ),
f4(χ) = d

dχ [χ2|f(χ)|]. The straight line f1(χ) with slope
unity is introduced in Fig. 3 to pinpoint interesting fea-
tures of curve f2(χ). To analyze the curves of Fig. 3, it is
convenient to write down the derivative of the function
θ2|f(θ)| which appears in Eq. (10):

d
dθ

θ2 |f(θ)| = 4θ sin2 θ√
2 + 4θ2 − 2 cos 2θ − 4θ sin 2θ

. (11)

For θ ≥ 0 the zeroes of Eq. (11) are located at θ = λπ,
where λ = 0, 1, 2, . . .
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Fig. 3. Curve 3 represents the difference between
curves 1 and 2, which are described in the text. Curve 4
represents the derivative of curve 2. Curve 4 never as-
sumes negative values for χ ≥ 0. The intersections of
curves 1 and 2 at the plateaus occur at the zeroes of
curve 4 which are χ = λπ, where λ = 0, 1, 2, . . . .

Several features are noticeable in Fig. 3:
1. The intersections of curves f1(χ) and f2(χ) at the

plateaus occur at the zeroes of curve f4(χ) and the zeroes
of even order of curve f3(χ).

2. In particular the zeroes of f4(χ) for χ ≥ 0 occur at
χ = λπ, where λ = 0, 1, 2, . . .

3. The intersections of curves f1(χ) and f2(χ) at the
successive plateaus are therefore separated by π on the
abcissa axis. In fact, considering that straight line 1 has
a unity slope, the successive intersections at the plateaus
are separated by π in the horizontal and vertical direc-
tions.

4. The horizontal and vertical distances from the origin
to the intersection on the first plateau are equal to π.

Considering the analysis of Figs. 2, 3 and the above
features, the following statements are proposed:

1. The curves f2(χ) in Figs. 2, 3, which represent the
variable part of Eq. (10) with their structure of equidis-
tant steps, describe the diffusion of the guiding center
and its passing through the structure of discrete levels
of Eq. (6).

2. These levels are located on the intersection points of
curves 1, 2 at the plateaus of curve 2 in Fig. 3. The inter-
section points at the plateaus are also zeroes of f4(χ) and
correspond to the values χ = λπ, where λ = 0, 1, 2, . . .

3. Each step is associated with the diffusion of the guid-
ing center through each level of Eq. (6).

4. The points on f2(χ) at which f4(χ) = 0 in Fig. 3
may be enumerated with the eigenvalues n = 1, 2, . . .; the
eigenvalue n = 0 corresponds to the origin.

5. As a consequence of the above items, the separation
between steps of f2(χ) should be equal to the separation
between levels in Eq. (6).

These statements will be used in the next section.

6. Final form of the expression
for Bohm-type diffusion

From the information obtained so far, related to the
structure of levels of the expression θ2|f(θ)| and its simi-
larity to the structure of levels of Eq. (6), it is possible to
propose a final form for the Bohm-type diffusion expres-
sion given by Eq. (10). This proposal is based upon the
periodicity of θ2|f(θ)| and its structure of levels, which
is similar to that in Eq. (6), in which the separation be-
tween successive levels is 2 ~ceB ; accordingly, let Eq. (10) be
normalized in such a way that the separation between its
successive steps be this same quantity. This is achieved
by considering the statements of Sect. 5, from which it
is deduced that a change of ∆θ = π corresponds to a
change of the same amount in the function θ2|f(θ)|, i.e.
∆(θ2|f(θ)|) = π, in particular at the points λπ. There-
fore, to obtain the corresponding change between succes-
sive steps of 2 ~ceB from Eq. (10) it is necessary to rewrite
this as

∣∣〈r2
0〉

∣∣ =
2
π

~c
eB

θ2 |f(θ)| . (12)

This expression represents the trajectory followed by
|〈r2

0〉| as a structure of steps (levels) continuously con-
nected with a separation between them by an amount
equal to 2 ~ceB just as Eq. (6) represents a discrete struc-
ture of levels with this same separation between them.
Then Eq. (12) serves to describe the diffusion of the guid-
ing center through the levels of Γ 2

n . Expression (12) for
Bohm-type diffusion describes the diffusion of the guid-
ing center on the plane of the Larmor orbit. Notice that
electrical perturbations outside the plane of the Larmor
orbit will induce, apart from the Bohm-type diffusion on
the plane of the Larmor orbit, motions of the guiding
center along the z axis (along the magnetic field). These
motions, however are not important for diffusion across
the magnetic field lines. In this sense, Bohm-type dif-
fusion of the guiding center is a purely two-dimensional
phenomenon occurring on the plane of the Larmor orbit.
Finally, a Bohm-type diffusion coefficient can be obtained
from Eq. (12) for large values of θ (large values of t); in-
deed, for these values of θ, |f(θ)| behaves as 1

θ and for
θ = kT

2~ t Eq. (12) reduces to
∣∣〈r2

0〉
∣∣ =

1
π

ckT

eB
t . (13)

If the displacement of the guiding center is considered
as a two-dimensional random walk on the plane of the
Larmor orbit, then the mean square displacement is
〈r2

0〉 = 4Dt [6]; therefore Eq. (13) can be written as:

4Dt =
1
π

ckT

eB
t , (14)

or

D =
1
4π

ckT

eB
=

4
π

DB , (15)

where DB is the Bohm diffusion coefficient 1
16

ckT
eB . On the

other hand, for t ≈ ω−1
c Eq. (13) produces |〈r2

0〉| ∼= ρ2
L
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which is the step size in the Bohm and Bohm-type diffu-
sion.

7. Concluding remarks

The presence of the staircase profile in the graph of
the expression for Bohm-type diffusion in two dimen-
sions was explained in terms of the following idea. As
the guiding center diffuses, it passes over the quantized
structure of the square of its radius vector in such a way
that this structure of equidistant levels manifests itself
through the presence of the successive equidistant steps
in the staircase profile. A normalized form of the expres-
sion that describes two-dimensional Bohm-type diffusion
was deduced by taking as a model the expression for the
quantized square of the guiding center radius vector.

The separation between successive steps in the graph
of the expression for Bohm-type diffusion in two dimen-
sions is the same as the separation between the levels of
the quantized square of the guiding center radius vector.
The Bohm-type coefficient of diffusion that produces this
expression for large values of θ turns out to be 4

π times
the Bohm diffusion coefficient. The results obtained from
the work undertaken in this paper support the hypoth-
esis proposed in Ref. [2] that a Bohm-type coefficient of
diffusion could be deduced by means of a quantum me-
chanical approach. Moreover, it should be emphasized
that by using the simple model proposed in Ref. [2], the
numerical factor in the Bohm-type coefficient of diffusion

achieved in the present paper is in close agreement with
that in the Bohm coefficient of diffusion.
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