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In the framework of the first Born approximation, we present a semirelativistic theoretical study of the
inelastic excitation (1s1/2 −→ 2s1/2) of hydrogen atom by electronic impact. The incident and scattered
electrons are described by a free Dirac spinor and the hydrogen atom target is described by the Darwin wave
function. Relativistic and spin effects are examined in the relativistic regime. A detailed study has been
devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this depen-
dence as well as the dynamic behavior of the differential cross-section in the relativistic regime have been addressed.
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1. Introduction

The theoretical study of relativistic electron–atom col-
lisions is fundamental to our understanding of many as-
pects in plasma physics and astrophysics. The devel-
opment of electron–atom collision studies has also been
strongly motivated by the need of data for testing and
developing suitable theories of the scattering and colli-
sion process, and providing a tool for obtaining detailed
information on the structure of the target atoms and
molecules. Many authors have studied this process us-
ing numerical tools. Thus, Kisielius et al. [1] employed
the R-matrix method with nonrelativistic and relativis-
tic approximations for the hydrogen-like He+, Fe25+ and
U91+ ions, where the case of transitions 1s −→ 2s and
1s −→ 2p as well as those between fine structure n = 2
levels were considered. Andersen and Bartschat [2] have
applied the semirelativistic Breit–Pauli R-matrix to cal-
culate the electron-impact excitation of the 2S1/2 −→
2P

o
1/2,3/2 resonance transitions in heavy alkali atoms.

Payne et al. [3] have studied the electron-impact ex-
citation of the 5s −→ 5p resonance transition in ru-
bidium by using a semirelativistic Breit–Pauli R-matrix
with pseudo-states (close-coupling) approach. Attaourti
et al. [4] have investigated the exact analytical relativis-
tic excitation 1S1/2 −→ 1S1/2 of atomic hydrogen by
electron impact in the presence of a laser field. They
have found that a simple formal analogy links the ana-
lytical expressions of the unpolarized differential cross-
-section (DCS) without laser and the unpolarized differ-
ential cross section in the presence of a laser field.
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The aim of this contribution is to add some new phys-
ical insights and to show that the nonrelativistic formal-
ism enables to describe particles with high kinetic en-
ergies. Before we present the results of our investiga-
tion, we first begin by sketching the main steps of our
treatment. For pedagogical purposes, we begin by the
most basic results of our work using atomic units (a.u.)
in which one has ~ = me = e = 1, where me is the
electron mass at rest, and which will be used through-
out this work. We will also work with the metric tensor
gµν = diag(1,−1,−1,−1) and the Lorentz scalar prod-
uct which is defined by (a · b) = aµbµ. The layout of this
paper is as follows. We present the necessary formalism
of this work in Sects. 2, 3 and 4, the result and discussion
in Sect. 5 and we end by a brief conclusion in Sect. 6.

2. Theory of the inelastic collision
1s1/2 −→ 2s1/2

In this section, we calculate the exact analytical ex-
pression of the semirelativistic unpolarized DCS for the
relativistic excitation of atomic hydrogen by electron im-
pact. The transition matrix element for the direct chan-
nel (exchange effects are neglected) is given by

Sfi = − i
∫

dt〈ψpf (x1)φf(x2)|Vd|ψpi(x1)φi(x2)〉

= − i
∫ +∞

−∞
dt

∫
dr1ψpf

(t, r1)γ0ψpi(t, r1)

×〈φf(x2)|Vd|φi(x2)〉 , (1)

where

(769)
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Vd =
1

r12
− Z

r1
(2)

is the direct interaction potential, r1 are the coordinates
of the incident and scattered electron, r2 the atomic elec-
tron coordinates, r12 = |r1−r2| and r1 = |r1|. The func-
tion ψpi(x1) = ψp(t, r1) = u(p, s) exp(− ip · x)/

√
2EV

is the electron wave function, described by a free Dirac
spinor normalized to the volume V , and φi,f(x2) =
φi,f(t, r2) are the semirelativistic wave functions of the
hydrogen atom where the index i and f stand for the
initial and final states, respectively. The semirelativistic
wave function of the atomic hydrogen is the Darwin wave
function for bound states [5], which is given by

φi(t, r2) = exp(− iEb(1s1/2)t)ϕ
(±)
1s (r2) , (3)

where Eb(1s1/2) is the binding energy of the ground state
of atomic hydrogen and ϕ

(±)
1s (r2) is given by

ϕ
(±)
1s (r2) =

(
14 − i

2c
α · ∇(2)

)
u(±)ϕ0(r2) , (4)

it represents a quasirelativistic bound state wave func-
tion, accurate to first order in Z/c in the relativistic cor-
rections (and normalized to the same order), with ϕ0

being the nonrelativistic bound state hydrogenic func-
tion. The spinors u(±) are such that u(+) = (1, 0, 0, 0)T
and u(−) = (0, 1, 0, 0)T and represent the basic four-
-component spinors for a particle at rest with spin-up and
spin-down, respectively. The matrix differential operator
α · ∇ is given by

α · ∇ =




0 0 ∂z ∂x − i∂y

0 0 ∂x + i∂y −∂z

∂z ∂x − i∂y 0 0
∂x + i∂y −∂z 0 0


 .

(5)
For the spin up, we have

ϕ
(+)
1s (r2) = ND1




1
0
i

2cr2
z

i
2cr2

(x + iy)




1√
π

e−r2 , (6)

and for the spin down, we have

ϕ
(−)
1s (r2) = ND1




0
1

i
2cr2

(x− iy)
− i

2cr2
z




1√
π

e−r2 , (7)

where

ND1 = 2c/
√

4c2 + 1 (8)

is a normalization constant lower but very close to 1.
Let us mention that the function φf(t, r2) in Eq. (1)
is the Darwin wave function for bound states [6],
which is also accurate to the order Z/c in the rela-
tivistic corrections. This is expressed as φf(t, r2) =

exp(− iEb(2s1/2)t)ϕ
(±)
2s (r2) with Eb(2s1/2) as the bind-

ing energy of the 2s1/2 state of atomic hydrogen

ϕ
(+)
2s (r2) = ND2




2− r2

0
i 4−r2

4r2c z
4−r2
4rc (−y + ix)




1
4
√

2π
e−r2 (9)

for the spin up and

ϕ
(−)
2s (r2) = ND2




0
2− r2

4−r2
4cr2

(y + ix)
i r2−4

4cr2
z




1
4
√

2π
e−r2 (10)

for the spin down. The transition matrix element
in Eq. (1) becomes

Sfi = − i
∫ +∞

−∞
dt

∫
dr1 dr2ψpf

(t, r1)γ0ψpi(t, r1)

×φ†f (t, r2)φi(t, r2)Vd (11)

and it is straightforward to get, for the transition ampli-
tude,

Sfi = − i
u(pf , sf)γ0u(pi, si)

2V
√

EfEi

2πHinel(∆)

× δ
(
Ef + E(2s1/2)− Ei − E(1s1/2)

)
, (12)

where ∆ = |pi − pf | and γ0 is the Dirac matrix. Using
the standard technique of the QED, we find for the un-
polarized DCS

dσ

dΩf
=
|pf |
|pi|

1
(4πc2)2

(
1
2

∑
sisf

|u(pf , sf)γ0u(pi, si)|2
)

× |Hinel(∆)|2 . (13)

3. Calculation of the integral part

The function Hinel(∆) is found if one performs the var-
ious integrals

Hinel(∆) =
∫ +∞

0

dr1 e i∆r1I(r1). (14)

3.1. Integral over r2

The quantity I(r1) is easily evaluated in the following
way. We first write the explicit form of I(r1):

I(r1) =
∫ +∞

0

dr2φ
†
2s(r2)

(
1

r12
− Z

r1

)
φ1s(r2) . (15)

Next, we develop the quantity r−1
12 in spherical harmonics

as
1

r12
= 4π

∑

lm

Ylm(r̂1)Y ∗
lm(r̂2)

2l + 1
(r<)l

(r>)l+1
, (16)

where r> is the greater of r1 and r2, and r< the lesser of
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them. The angular coordinates of the vectors r1 and r2

are such that: r̂1 = (θ1, ϕ1) and r̂2 = (θ2, ϕ2). We use
the well known integral [7]:

∫ +∞

x

duum e−αu =
m!

αm+1
e−αx

m∑
µ=0

αµxµ

µ!
,

Re(α) > 0 , (17)

then, after some analytic calculations, we get for I(r1):

I(r1) =
6
27

(
1
c2
− 4

)
+

4
27c2

1
r1
− 4

9

(
1 +

1
8c2

)
r1 .

(18)

3.2. Integral over r1

The integration over r1 gives rise to the following for-
mula:

Hinel(∆) =
∫ +∞

0

dr1 e i∆r1I(r1)

= − 4π√
2

(I1 + I2 + I3) , (19)

the angular integrals are performed by expanding the
plane wave e i∆r1 in spherical harmonics as

e i∆r1 =
∑

lm

4π i ljl(∆r1)Ylm(∆̂)Y ∗
lm(r̂1) (20)

with ∆ = pi − pf is the relativistic momentum transfer
and ∆̂ is the angular coordinate of the vector ∆. Then,
after some analytic computations, we get for I1, I2 and
I3 the following result:

I1 =
4

27c2

∫ +∞

0

dr1r1 e−
3
2 r1j0(∆r1)

=
4

27c2

1[
(3/2)2 + ∆2

] ,

I2 =
6
27

(
1
c2
− 4

) ∫ +∞

0

dr1r
2
1 e−

3
2 r1j0(∆r1)

=
2
27

(
1
c2
− 4

)
3[

(3/2)2 + ∆2
] ,

I3 = −4
9

(
1 +

1
8c2

) ∫ +∞

0

dr1r
3
1 e−

3
2 r1j0(∆r1)

=
8
9

(
1 +

1
8c2

)
∆2 − 27/4[

(3/2)2 + ∆2
] . (21)

It is clear that the situation is different than in elastic col-
lision [4], since we have no singularity in the case ∆→ 0.

4. Calculation of the spinorial part

The calculation is now reduced to the computation of
traces of γ matrices. This is routinely done using Re-
duce [8]. We consider the unpolarized DCS. Therefore,

the various polarization states have the same probability
and the actual calculated spinorial part is given by sum-
ming over the final polarization sf and averaging aver
the initial polarization si. Therefore, the spinorial part
is given by

1
2

∑
sisf

∣∣u(pf , sf)γ0u(pi, si)
∣∣2

= Tr
(
γ0(p/ic + c2)γ0(p/fc + c2)

)

= 2c2

(
2EfEi

c2
− (pi.pf) + c2

)
. (22)

We must, of course, recover the result in the nonrela-
tivistic limit (γ −→ 1), situation of which the differential
cross-section can be simply given by

dσ

dΩf
=
|Kf |
|K i|

128(|∆nr|2 + 9
4

)6 (23)

with |∆nr| = |K i−Kf | is the nonrelativistic momentum
transfer and the momentum vectors (K i, Kf) are related
by the following formula:

Kf =
(|K i|2 − 3/4

)1/2
. (24)

5. Results and discussions

In presenting our results it is convenient to consider
separately those corresponding to nonrelativistic regime
(the relativistic parameter γ ≈ 1) and those related to
relativistic one (the relativistic parameter γ ≈ 2). Be-
fore beginning the discussion of the obtained results, it
is worthwhile to recall the meaning of some abbreviation
that will appear throughout this section. The NRDCS
stands for the nonrelativistic differential cross-section,
where nonrelativistic plane waves are used to describe
the incident and scattered electrons. The SRDCS stands
for the semirelativistic differential cross-section.

We begin our numerical work with the study of the de-
pendence of the probability density for radial Darwin and
Dirac wave functions on the atomic charge number Z. So
long as the condition Zα ¿ 1 is verified, the use of Dar-
win wave function does not have any influence at all on
the results at least in the first order of perturbation the-
ory. So, the semirelativistic treatment when Z increases
may generate large errors but not in the case of this work.
In this paper, we cannot have numerical instabilities since
there are none. For the sake of illustration, we give in
Fig. 1 the behavior of the probability density for radial
Darwin wave functions as well as that of the exact rela-
tivistic Dirac wave functions for different values of Z. As
you may see, even if it is not noticeable in Fig. 1, there
are growing discrepancies for Z = 10 and these become
more pronounced when Z = 20. The QED formulation
shows that there are relativistic and spin effects at the
relativistic domain and the nonrelativistic formulation is
no longer valid.

In the relativistic regime, the semirelativistic differ-
ential cross-section results obtained for the 1s −→ 2s
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Fig. 1. Behavior of the probability density for radial
Darwin wave function compared with that of the Dirac
wave function for small distances and for increasing val-
ues of the atomic charge number.

Fig. 2. The long-dashed line represents the semirela-
tivistic DCS, the solid line represents the corresponding
nonrelativistic DCS for a relativistic parameter (γ =
1.5) as functions of the scattering angle θ.

transition in atomic hydrogen by electron impact, are
displayed in Figs. 2 and 3. In this regime, there are no
theoretical models and experimental data for comparison
as in nonrelativistic regime. In such a situation, it ap-
pears from Figs. 2 and 3 that in the limit of high electron
kinetic energy, the effects of the additional spin terms and
the relativity begin to be noticeable and that the nonrel-
ativistic formalism is no longer applicable. Also a peak
in the vicinity of θf = 0◦ is clearly observed.

The investigation in the nonrelativistic regime was car-
ried out with γ as a relativistic parameter and θ as a
scattering angle. In atomic units, the kinetic energy is
related to γ by the following relation: Ek = c2(γ − 1).
Figure 4 shows the dependence of DCS, obtained in two

Fig. 3. The solid line represents the semirelativistic
DCS, the long-dashed line represents the corresponding
nonrelativistic DCS for various values of the relativistic
parameter (γ = 1.5, γ = 2 and γ = 2.5) as functions of
the scattering angle θ.

Fig. 4. The solid line represents the semirelativistic
DCS, the long-dashed line represents the correspond-
ing nonrelativistic DCS for a relativistic parameter γ =
1.00053 as functions of the scattering angle θ.

models (SRDCS, NRDCS), on scattering angle θ. In this
regime, it appears clearly that there is no difference be-
tween these models. Figure 5 shows the variation of the
SRDCS with θ for various energies. It also shows that the
SRDCS increases with γ, for small scattering angles and
decreases elsewhere. Figure 6 presents the observed and
calculated angular dependence of 1s–2s differential cross-
-section of e−–H scattering at incident energy 200 eV.
Results obtained in the approaches (semirelativistic and
nonrelativistic approximations) are indistinguishable and
in good agreement with the experimental data provided
by Williams [9].
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Fig. 5. The variation of the SRDCSs with respect to θ,
for various kinetic energies.

Fig. 6. The variation of the differential 1s–2s cross-
-section of e−–H scattering at 200 eV. The dots are the
observed values of Williams [9]; the solid line represents
the semirelativistic approximation and the long-dashed
line corresponds to the nonrelativistic DCS.

6. Conclusion

In this paper we have presented the results of a semirel-
ativistic excitation of atomic hydrogen by electronic im-
pact. We have used the simple semirelativistic Darwin
wave function that allows to obtain analytical results in
an exact and closed form within the framework of the
first Born approximation. This model gives good results
if the condition Z/c ¿ 1 is fulfilled. We have compared
our results with previous nonrelativistic results and have
found that the agreement between the different theoreti-
cal approaches is good in the nonrelativistic regime. We
have also showed that the nonrelativistic treatment is no
longer reliable for higher energies. We hope that we will
be able to compare our theoretical results with forthcom-
ing experimental data in the relativistic regime.
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