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A multistage endoreversible Carnot heat engine system operating between a finite thermal capacity high-

-temperature fluid reservoir and an infinite thermal capacity low-temperature environment with a generalized
heat transfer law [q ∝ (∆(T n))m] is investigated in this paper. Optimal control theory is applied to derive the
continuous Hamilton–Jacobi–Bellman equations, which determine the optimal fluid temperature configurations
for maximum power output under the conditions of fixed initial time and fixed initial temperature of the driving
fluid. Based on the general optimization results, the analytical solution for the case with Newtonian heat transfer
law [q ∝ ∆(T )] is further obtained. Since there are no analytical solutions for the other heat transfer laws,
the continuous Hamilton–Jacobi–Bellman equations are discretized and the dynamic programming algorithm is
adopted to obtain the complete numerical solutions of the optimization problem, and the relationships among the
maximum power output of the system, the process period and the fluid temperature are discussed in detail. The
results show that the optimal high-temperature fluid reservoir temperature for the maximum power output of
the multistage heat engine system with Newtonian and linear phenomenological [q ∝ ∆(T−1)] heat transfer laws
decrease exponentially and linearly with time, respectively, while those with the Dulong–Petit [q ∝ (∆T )1.25],
radiative [q ∝ ∆(T 4)] and [q ∝ (∆(T 4))1.25] heat transfer laws are different from the former two cases significantly.

PACS: 05.70.–a, 05.60.Cd, 05.70.Ln

1. Introduction
In the analyses of finite-time thermodynamics [1–11],

the basic thermodynamic model is the so-called “endore-
versible Carnot engine”, in which only the irreversibil-
ity of the finite-rate heat transfer is considered. Cur-
zon and Ahlborn [12] derived the efficiency ηCA corre-
sponding to the maximum power output of an endore-
versible Carnot heat engine cycle with Newtonian heat
transfer law [q ∝ ∆(T )]. Yan [13] derived the relation
between the optimal efficiency and the optimal power
output for an endoreversible Carnot heat engine, i.e. the
fundamental optimal relation of Carnot heat engine with
Newtonian heat transfer law. Sun and Lai [14, 15] and
Chen et al. [16] obtained the holographic power versus
efficiency spectrum, and formed the finite time thermo-
dynamic optimization criteria for the parameter selection
of an endoreversible Carnot heat engine with Newtonian
heat transfer law.

In general, heat transfer is not necessarily Newtonian.
Gutowicz-Krusin et al. [17] first derived the maximum
power and the corresponding thermal efficiency bounds
of an endoreversible Carnot heat engine with the gener-
alized convective heat transfer law [q ∝ (∆T )m]. Some
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authors have assessed the effects of the linear phenomeno-
logical heat transfer law [q ∝ ∆(T−1)] and radiative heat
transfer law [q ∝ ∆(T 4)] on the performance of endore-
versible Carnot heat engines [18–22].

Chen et al. [23–25], Angulo-Brown and Paez-
-Hernandez [26] and Huleihil and Andresen [27] derived
the optimal relation between power output and efficiency
with the generalized convective heat transfer law [23, 24,
26, 27] and mixed heat resistances [25]. De Vos [28, 29]
first derived the optimal relation between power output
and efficiency of endoreversible Carnot heat engine with
generalized radiative heat transfer law [q ∝ (∆Tn)].

Chen and Yan [30] and Gordon [31] further derived the
optimal relation between power output and efficiency of
the endoreversible Carnot heat engine based on this heat
transfer law.

However, the works mentioned above were restricted
to static optimization researches on a class of single-stage
steady systems, and the optimization methods used are
also very simple. Since the mid 1990s, dynamic optimiza-
tion researches on complex multistage unsteady thermo-
dynamic systems by using the Hamilton–Jacobi–Bellman
(HJB) theory have always been one of the very important
research fields in finite time thermodynamics.

Sieniutycz [5, 7, 11, 32–38], Sieniutycz and Spa-
kovsky [39], and Szwast and Sieniutycz [40] investigated
the maximum power output of Newtonian law multi-
stage continuous endoreversible Carnot heat engine sys-
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tem operating between a finite thermal capacity high-
-temperature fluid reservoir and an infinite thermal ca-
pacity low-temperature environment by applying HJB
theory [5, 7, 11, 32–36, 38], and the results were fur-
ther extended to the multistage discrete endoreversible
Carnot heat engine system [5, 7, 11, 37, 39, 40].

Sieniutycz and Szwast [41] and Sieniutycz [11, 42] fur-
ther investigated the maximum power output of the mul-
tistage irreversible Carnot heat engine system with a
finite thermal capacity high-temperature reservoir and
Newtonian heat transfer law. Li et al. [43, 44] fur-
ther considered that both the high- and low-temperature
sides are finite thermal capacity fluid reservoir, and in-
vestigated the problems of maximizing the power out-
put of multistage continuous endoreversible [43] and ir-
reversible [44] Carnot heat engine systems with Newto-
nian heat transfer law. Sieniutycz and Kuran [45, 46],
Kuran [47] and Sieniutycz [11, 48–51] investigated the
maximum power output of the finite high-temperature
fluid reservoir multistage continuous irreversible Carnot
heat engine system with the radiative heat transfer law
and the corresponding optimal fluid reservoir tempera-
ture configuration.

Because there are no analytical solutions for the case
with the pure radiative heat transfer law, the authors
of Refs. [11, 46–51] obtained the analytical solutions
of the optimization problems by replacing the radiative
heat transfer law by the so-called pseudo-Newtonian heat
transfer law [q ∝ α(T 3)(∆T )] approximately, which is
Newtonian heat transfer law with a heat transfer co-
efficient α(T 3) as a function of the cube of the fluid
reservoir temperature. Li et al. [52] further investigated
the problems of maximizing the power output of multi-
stage continuous endoreversible Carnot heat engine sys-
tem with two finite thermal capacity heat reservoirs and
the pseudo-Newtonian heat transfer law. Sieniutycz [53]
further investigated the maximum power output of mul-
tistage continuous irreversible Carnot heat engine system
with the non-linear heat transfer law [q ∝ α(Tn)(∆T )],
i.e. Newtonian heat transfer law with a heat transfer co-
efficient α(Tn) as a function of the n-times of the fluid
reservoir temperature. Xia et al. [54, 55] investigated the
maximum power output of multistage continuous endore-
versible [54] and irreversible [55] Carnot heat engine sys-
tem with the finite thermal capacity high-temperature
fluid reservoir and generalized convective heat transfer
law by applying HJB theory.

One of aims of finite time thermodynamics is to pur-
sue generalized rules and results. Chen et al. [56] and Li
et al. [57–61] investigated the optimal performances of
Carnot heat engine [56, 57], refrigerator [58, 59] and
heat pump [60, 61] with a generalized heat transfer law
[q ∝ (∆(Tn))m], which included the results with Newto-
nian heat transfer law, the linear phenomenological heat
transfer law, the radiative heat transfer law, the Dulong–
Petit heat transfer law [q ∝ (∆T )1.25] [62], the general-
ized convective transfer law and the generalized radiative
transfer law.

Based on Refs. [5, 7, 11, 32–55], this paper will fur-
ther investigate the maximum power output of multi-
stage endoreversible Carnot heat engine system with the
finite thermal capacity high-temperature heat reservoir,
in which the heat transfer between the reservoir and the
working fluid obeys the generalized heat transfer law
[q ∝ (∆(Tn))m] [56–61, 63–65]. Based on the univer-
sal optimization results, the analytical solution for the
case with Newtonian heat transfer law will be further ob-
tained, while for the non-Newtonian heat transfer laws,
the continuous HJB equations will be discretized and the
dynamic programming (DP) method will be adopted to
obtain the complete numerical solutions of the optimiza-
tion problem.

2. System modeling and characteristic
description

The model of a multistage continuous endoreversible
Carnot heat engine system with finite high-temperature
fluid reservoir to be considered is shown in Fig. 1. The
first fluid (i.e. the driving fluid) flows along the x-axis, in-
finitesimal Carnot heat engines are located continuously
between two separated boundary layers of the fluids.
Each infinitesimal Carnot heat engine is the same. Dur-
ing the infinitesimal length dx, the infinitesimal Carnot
heat engine absorbs heat from the first fluid, and re-
leases heat to the second fluid (i.e. environment). The
cumulative power is delivered at the last stage. The
thermal capacity of the high-temperature fluid is finite,
and its temperature decreases along the flow direction
due to the heat absorbed by the multistage heat engine,
so the fluid reservoir of the multistage continuous en-
doreversible Carnot heat engine system is non-stationary.
However, for each infinitesimal Carnot heat engine, its
high-temperature heat reservoir is stationary. For the
convenience of analysis, the fundamental characteristic of
the single stage endoreversible Carnot heat engine with
stationary reservoirs will be firstly derived, and then that
of the multistage continuous endoreversible Carnot heat
engine system with a non-stationary fluid heat reservoir
will be further obtained.

Fig. 1. Mode of multistage continuous endoreversible
Carnot heat engine system.
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2.1. Fundamental characteristic relationships of a single
stage stationary endoreversible Carnot heat engine
Each infinitesimal endoreversible Carnot heat engine

as shown in Fig. 1 is assumed to be a single stage endore-
versible Carnot heat engine with stationary heat reser-
voirs as shown in Fig. 2. Let the heat flux rates ab-

Fig. 2. Mode of single endoreversible Carnot heat en-
gine with stationary heat reservoirs.

sorbed and released by the working fluid in the heat en-
gine be q1 and q2, respectively. T1 and T2 are the tem-
peratures of the reservoirs corresponding to the high- and
low-temperature sides, respectively. T1′ and T2′ are the
temperatures of the working fluid corresponding to the
high- and low-temperature sides, respectively. Consid-
ering that the heat transfer between the reservoir and
the working fluid obeys the generalized heat transfer law
[q ∝ (∆(Tn))m] [56–61, 63–65] including the generalized
radiative heat transfer law [q ∝ ∆(Tn)] and the general-
ized convective heat transfer law [q ∝ (∆T )m], then

q1 = k1(Tn
1 − Tn

1′)
m , q2 = k2(Tn

2′ − Tn
2 )m, (1)

where k1 and k2 are the heat conductance of heat trans-
fer process corresponding to high- and low-temperature
sides. In terms of the second law of thermodynamics,
the entropy balance equation of the endoreversible heat
engine is given by

k1(Tn
1 − Tn

1′)
m/T1′ = k2(Tn

2′ − Tn
2 )m/T2′ . (2)

From Eqs. (1) and (2), the power output P and the ef-
ficiency η of the endoreversible heat engine are, respec-
tively, given by

P = q1 − q2 = q1η , (3)
η = P/q1 = 1− q2/q1 = 1− T2′/T1′ . (4)

According to Refs. [7, 11, 41, 42, 45–51, 53–55, 66], the
variable T ′ ≡ T2T1′/T2′ is defined. Equation (4) fur-
ther gives η = 1 − T2/T ′, and the efficiency of the re-
versible heat engine, i.e. the Carnot efficiency, is given
by ηC = 1 − T2/T1 under the same conditions. The for-
mula of η is very similar to that of ηC, so the variable T ′

is called the Carnot temperature in Refs. [5, 7, 11, 41, 42,
45–51, 53–55, 66]. The sole irreversibility of the endore-
versible heat engine is due to the finite rate heat transfer

between the working fluid and the reservoirs, and then
the entropy generation rate σ of the total cycle is

σ = q2/T2 − q1/T1 = q1 [T2′/(T1′T2)− 1/T1]

= q1 (1/T ′ − 1/T1) . (5)
Substituting T2′ ≡ T2T1′/T ′ into Eq. (2) yields

T1′ =

[
Tn

1 −
(k2)1/m(Tn

1 − T
′n)

(k1)1/m(T ′/T2)(mn−1)/m + (k2)1/m

]1/n

.

(6)
From T2′ ≡ T2T1′/T ′, one obtains the temperature T2′ of
the working fluid at the low temperature side, which is
given by

T2′ =
[(

T1T2

T ′

)n

− (k2)1/m [(T1/T ′)n − 1]Tn
2

(k1)1/m(T ′/T2)(mn−1)/m + (k2)1/m

]1/n

. (7)

By substituting Eq. (6) into Eq. (1), one further obtains
the heat flux rate q1, as follows:

q1 = k1k2
(Tn

1 − T
′n)m

[
(k1)1/m(T ′/T2)(mn−1)/m + (k2)1/m

]m . (8)

Substituting η = 1−T2/T ′ and Eq. (8) into Eq. (3) yields
the power output

P = k1k2
(Tn

1 − T
′n)m

[
(k1)1/m(T ′/T2)(mn−1)/m + (k2)1/m

]m

×
(

1− T2

T ′

)
. (9)

By substituting Eq. (8) into Eq. (5), one further obtains
the entropy generation rate σ, as follows:

σ = k1k2
(Tn

1 − T
′n)m

[
(k1)1/m(T ′/T2)(mn−1)/m + (k2)1/m

]m

×
(

1
T ′
− 1

T1

)
. (10)

From Eqs. (6)–(10), all of parameters of the heat engine
could be expressed as functions of the Carnot temper-
ature T ′. If the optimal T ′ is obtained, the other opti-
mal parameters of the heat engine could also be obtained
from T ′. Therefore, the optimization problem is simpli-
fied by choosing the Carnot temperature T ′ as the control
variable.

2.2. Fundamental characteristic of the multistage
continuous endoreversible Carnot heat engine system

For the multistage continuous endoreversible Carnot
heat engine system as shown in Fig. 1, G is the molar flow
rate of the driving fluid at the high-temperature side, Cp

is its constant-pressure thermal capacity per molar, and
the molar thermal capacity rate of the fluid is GC = GCp.
Both G and Cp herein are assumed to be independent of
the temperature T1, while for the case that G and Cp de-
pend on the temperature T1, one could analyze in a simi-
lar way adopted in this paper. Let α1 and α2 be the heat
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transfer coefficients corresponding to the high- and low-
-temperature sides, respectively, aV 1 is the heat transfer
area between the driving fluid per unit volume and the
working fluid of the heat engine at the high-temperature
side, and F1 is the driving fluid cross-sectional area, per-
pendicular to x. The height of the heat transfer units
HTU = GC/(αaV 1F1), where α = α1α2/(α1 + α2) is
the equivalent heat transfer coefficient, is defined in Refs.
[5, 7, 11, 32–44, 54, 55]. In order to make the derivation
process more general and obtain the results for other non-
-linear heat transfer laws, the height of the heat transfer
unit HTU = GC/(α1aV 1F1T

mn−1
2 ) is defined herein and

is different from that defined in Refs. [5, 7, 11, 32–44]. It
has the same unit as length. In terms of the first law of
thermodynamics, one has

q/(k1T
mn−1
2 ) = −GC dT1/

(
α1aV 1F1T

mn−1
2 dx

)

= −GC dT1/
(
α1aV 1F1T

mn−1
2 vdt

) ≡ −dT1/dτ, (11)
where v is the linear velocity of the driving fluid and
τ = x/HTU = vt/HTU is the non-dimensional time. For
Newtonian heat transfer law (m = 1, n = 1), τ is equal
to the ratio of the total heat conductance at the high-
-temperature side to the thermal capacity rate of the
driving fluid, i.e., the number of heat transfer units, and
is generalized for the non-Newtonian heat transfer law,
so in this study τ is called the generalized number of
heat transfer units. It is evident that optimizing with
the variable τ is equivalent to that with the position x
or the physical time t. From Eq. (11), one obtains the
heat conductance k1 of each infinitesimal endoreversible
Carnot heat engine, as follows:

k1 = GC dτ/Tmn−1
2 . (12)

For the given integration section [τi, τf ], the boundary
temperatures of the driving fluid are denoted as T1i

and T1f , then the power output Ẇ and the entropy gen-
eration rate σs are, respectively, given by

Ẇ = −
∫ T1f

T1i

GCηdT1 = −
∫ T1f

T1i

GC

(
1− T2

T ′

)
dT1

= −
∫ τf

τi

GC

(
1− T2

T ′

)
Ṫ1dτ , (13)

σs = −
∫ T1f

T1i

GC

(
1
T ′
− 1

T1

)
dT1

= −
∫ T1f

T1i

GC

T2
(ηC − η) dT1

= −
∫ τf

τi

GC

(
1
T ′
− 1

T1

)
Ṫ1dτ , (14)

where Ṫ1 = dT1/dτ . If the multistage endoreversible
heat engine system turns to be reversible, i.e. T ′ = T1, it
follows from Eq. (13) that:

Ẇrev = GC [T1i − T1f − T2 ln(T1i/T1f)] , (15)
where Ẇrev is the reversible power output performance

limit. If T1f = T2 further, the reversible power output
performance limit Ẇrev turns to be the classical thermo-
dynamic exergy Aclass of the ideal fluid. For the endore-
versible Carnot heat engine system considered herein,
there exists the loss of availability due to the finite rate
heat transfer, and the high-temperature driving fluid
temperature cannot decrease to the low-temperature en-
vironment temperature T2 in a finite time, so the maxi-
mum value of Eq. (13) is smaller than Aclass consequen-
tially. Combining Eq. (8) with Eq. (11) yields

dT1

dτ
= −k2

× (Tn
1 − T

′n)m

[
(k1)1/m(T ′/T2)(mn−1)/m + k

1/m
2

]m

Tmn−1
2

.

(16)
Substituting Eq. (16) into Eqs. (13) and (14), respec-
tively, yields

Ẇ =
∫ τf

τi

GC
(Tn

1 − T
′n)m

[
(k1/k2)1/m(T ′/T2)(mn−1)/m + 1

]m
Tmn−1

2

×
(

1− T2

T ′

)
dτ , (17)

σs =
∫ τf

τi

GC
(Tn

1 − T
′n)m

[
(k1/k2)1/m(T ′/T2)(mn−1)/m + 1

]m
Tmn−1

2

×
(

1
T ′
− 1

T1

)
dτ . (18)

3. HJB equation for the optimization problem

The problem now is to determine the maximum value
of Eq. (17) subjects to the constraint of Eq. (16). The
control variable is T ′ ≡ T2T1′/T2′ , and the inequality
T1 > T1′ > T2′ > T2 always holds for the heat en-
gine, so one obtains T2 ≤ T ′ ≤ T1. This optimal control
problem belongs to a variational problem whose control
variable has the constraint of closed set, and the Pon-
tryagin minimum value principle or Bellman’s dynamic
programming theory may be applied [5, 7, 11, 67, 68].
When the state vector dimension of the optimal control
problem is small, the numerical optimization conducted
by the dynamic programming theory is very efficient.
Let the optimal performance objective of the problem
be Ẇmax(T1i, τi, T1f , τf), and the admissible control set of
the control variable T ′(t) is denoted as Ω . The perfor-
mance objective of the control problem can be expressed
as follows:

Ẇmax(T1i, τi, T1f , τf) ≡ max
T ′(t)∈Ω

[
Ẇ (T1i, τi, T1f , τf)

]

= max
T ′(t)∈Ω

(∫ τf

τi

f0(T1, T
′, τ)dτ

)
, (19)

where f0(T1, T
′, τ) is given by
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f0(T1, T
′, τ)

= GC
(Tn

1 − T
′n)m

[
(k1/k2)1/m(T ′/T2)(mn−1)/m + 1

]m
Tmn−1

2

×
(

1− T2

T ′

)
. (20)

From Eqs. (16) and (17), the HJB equation for the opti-
mization problem is given by

∂Ẇmax

∂τ
+ max

T ′(τ)∈Ω

[
f0(T1, T

′, τ)

+
∂Ẇmax

∂T1
f(T1, T

′, τ)
]

= 0 , (21)

where f(T1, T
′, τ) is given by

f(T1, T
′, τ)

= − (Tn
1 − T

′n)m

[
(k1/k2)1/m(T ′/T2)(mn−1)/m + 1

]m
Tmn−1

2

. (22)

Substituting Eqs. (20) and (22) into Eq. (21) yields

∂Ẇmax

∂τ
+ max

T ′(t)∈Ω

{[
GC

(
1− T2

T ′

)
− ∂Ẇmax

∂T1

]

× (Tn
1 − T

′n)m

[
(k1/k2)1/m(T ′/T2)(mn−1)/m + 1

]m
Tmn−1

2

}

= 0 . (23)

There is analytical solution of Eq. (23) for the only case
with Newtonian heat transfer law, while for the other
laws, one has to refer to numerical methods. The contin-
uous differential equation should be discretized for the
numerical calculation performed on the computer, the
discrete equations are given based on Eq. (23), as fol-
lows:

ẆN =
N∑

i=1

[
Gi

C

(
1− T2

T ′i

)

×
[
(T i

1)
n − (T ′i)n

]m
θi

[
(k1/k2)1/m(T ′i/T2)(mn−1)/m + 1

]m
Tmn−1

2

]
,

(24)

T i
1 − T i−1

1

= −
[
(T i

1)
n − (T ′i)n

]m

[
(k1/k2)1/m(T ′i/T2)(mn−1)/m + 1

]m
Tmn−1

2

θi,

(25)

τ i − τ i−1 = θi. (26)
The optimal control problem is to determine the maxi-
mum value of Eq. (24) subject to the constraints of dis-
crete Eqs. (25) and (26). From Eqs. (24)–(26), the Bell-
man backward recurrence equation is given by

Ẇ i
max

(
T i

1, τ
i) = max

T′i,θi

[
Gi

C

(
1− T2

T ′i

)

×
[
(T i

1)
n − (T ′i)n

]m
θi

[
(k1/k2)1/m(T ′i/T2)(mn−1)/m + 1

]m
Tmn−1

2

+ Ẇ i−1
max

(
T i

1

+ θi

[
(T i

1)
n − (T ′i)n

]m

[
(k1/k2)1/m(T ′i/T2)(mn−1)/m + 1

]m
Tmn−1

2

,

τ i − θi
)]

. (27)

References [11, 48, 50] discussed the convergence of dis-
crete recurrence equation of dynamic programming to the
continuous HJB equation in detail. For the optimization
problem considered herein, the term f [T1(τ), T ′(τ), τ ]
in Eq. (22) contains the time variable τ inexplicitly, so
Eq. (27) is convergence to Eq. (23).

4. Analyses for special cases

4.1. For generalized radiative heat transfer law
When m = 1, i.e. the heat transfer between the work-

ing fluid and the heat reservoir obeys the generalized ra-
diative heat transfer law, Eqs. (16) and (23) become, re-
spectively,

dT1

dτ
= − Tn

1 − T
′n

[(k1/k2)(T ′/T2)n−1 + 1] Tn−1
2

, (28)

∂Ẇmax

∂τ
+ max

T ′(t)∈Ω

{[
GC

(
1− T2

T ′

)
− ∂Ẇmax

∂T1

]

× (Tn
1 − T

′n)
[(k1/k2)(T ′/T2)n−1 + 1] Tn−1

2

}
= 0 . (29)

If n = 1 further, i.e. the heat transfer between the
working fluid and the heat reservoir obeys Newtonian
heat transfer law. From Eqs. (28) and (29), and through
some mathematical derivation, the optimal reservoir tem-
perature T1(τ) and Carnot temperature T ′(τ) versus the
non-dimensional time τ are, respectively, given by

T1(τ) = T1i(T1f/T1i)(τ−τi)/(τf−τi), (30)

T ′(τ) = T1i [(1 + k1/k2) ln(T1f/T1i)/(τf − τi) + 1]

× (T1f/T1i)
(τ−τi)/(τf−τi) . (31)

The maximum power output Ẇmax of the heat engine
system is [5, 7, 11, 32–44, 54, 55]:

Ẇmax = GC

(
T1i − T1f − T2 ln

T1i

T1f

)

− GCT2 [ln(T1i/T1f)]
2

(τf − τi)/ [1 + (k1/k2)]− ln(T1i/T1f)

= Ẇrev − T2σs . (32)
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From Eqs. (31) and (32), and for the fixed parameters
of the initial time τi and initial state T1(τi), the optimal
control T ′ and the extremum power Ẇmax are functions
of τf and T1(τf). Since T2 ≤ T ′ ≤ T1, and from Eq. (31),
T ′(τ) is a monotonic decreasing function of τ . The con-
straint T ′(τf) ≥ T2 always holds in order to make every
energy converter work as the heat engine model, i.e. the
thermal efficiency η = 1− T2/T ′ > 0, then one obtains

T1f [(1 + k1/k2) ln(T1f/T1i)/(τf − τi) + 1] ≥ T2 . (33)

From Eq. (33) and for a finite time τf , the inequality
T1f/T1i < 1 holds for the heat engine system, so one ob-
tains (1 + k1/k2) ln(T1f/T1i)/(τf − τi) < 0. Therefore,
the final temperature T1f of the driving fluid at the high-
-temperature side is higher than the environment temper-
ature T2, and it also exists a low limit value T̄1f . This low
limit value T̄1f can be obtained by changing the inequal-
ity (33) to an equation and solving the transcendental
equation numerically. When the final temperature T1f is
fixed, Eq. (32) shows that Ẇmax is a monotonic increas-
ing function of τf , and from Ẇmax = 0, one obtains the
limit value of τf , i.e. τ̄f , as follows:

τ̄f =
(1 + k1/k2) [ln(T1i/T1f)]

2
T2

T1i − T1f − T2 ln(T1i/T1f)

+ (1 + k1/k2) ln(T1i/T1f) + τi . (34)

When the final time τf is free and the final temperature
T1f is fixed, τf must be larger than τ̄f so that the mul-
tistage heat engine system produces power. When τf is
fixed and satisfies τf > τ̄f , one obtains Ẇmax < Ẇrev

from Eq. (32), which shows that the maximum power
output Ẇmax is a much more realistic, stronger limit
than its classical reversible performance limit. Besides,
Ẇmax→Aclass when τf →∞ and T1(τf)→T2, i.e. the
maximum power output Ẇmax tends to the classical ther-
modynamic exergy. When the final time τf is fixed and
the final state T1f is free, and from Eq. (32), both the re-
versible power output Ẇrev and the exergy lost T2σs in-
crease with the decrease of the temperature T1f , so there
is an optimal final temperature T ∗1f during the closed in-
terval [T̄1f , T1i] for the power output of the heat engine
system to achieve its maximal value. It is easy to obtain
T ∗1f by solving equation dẆmax/dT1f = 0 by numerical
methods.

Fig. 3. The power output decision schematic plan of
the multistage discrete endoreversible Carnot heat en-
gines [47].

If n = −1 further, i.e. the heat transfer between the
working fluid and the heat reservoir obeys the linear phe-
nomenological heat transfer law, there are no analytical

solutions of Eqs. (28) and (29), and only numerical so-
lutions can be obtained from Eqs. (24)–(27) by applying
the dynamic programming algorithm as shown in Fig. 3;
if n = 4 further, i.e. the heat transfer between the work-
ing fluid and the heat reservoir obeys the radiative heat
transfer law, there are also no analytical solutions, so the
dynamic programming algorithm should be adopted to
obtain numerical solutions.

4.2. For generalized convective heat transfer law

When n = 1, i.e. the heat transfer between the working
fluid and the heat reservoir obeys the generalized convec-
tive heat transfer law, Eqs. (16) and (23) become [54, 55],
respectively,

dT1

dτ
= − (T1 − T ′)m

[
(k1/k2)1/m(T ′/T2)(m−1)/m + 1

]m
Tm−1

2

,

(35)

∂Ẇmax

∂τ
+ max

T ′(τ)∈Ω

{[
GC

(
1− T2

T ′

)
− ∂Ẇmax

∂T1

]

× (T1 − T ′)m

[
(k1/k2)1/m(T ′/T2)(m−1)/m + 1

]m
Tm−1

2

}
= 0 .

(36)
There are only analytical solutions of Eqs. (35) and (36)
for a few heat transfer laws. If m = 1 further, the results
for the case with Newtonian heat transfer law are also
obtained; if m = 1.25 further, i.e. the heat transfer be-
tween the working fluid and the heat reservoir obeys the
Dulong–Petit heat transfer law [62], there are no analyt-
ical solutions of Eqs. (35) and (36), and only numerical
solutions can be obtained from Eqs. (24)–(27) by apply-
ing the dynamic programming algorithm.

5. Numerical examples and discussions

5.1. Determination of calculation parameters
and performance analysis

for a single stationary heat engine

Assume that the molar flux rate of the high-
-temperature driving fluid is G = 1 mol/s, its constant-
-pressure thermal capacity is Cp = 52.8 J/(mol K),
so the thermal capacity rate of the high-temperature
driving fluid is GC = GCp = 52.8 W/K. The initial
temperature of the driving fluid is T10 = 2800 K, and
its line velocity is v = 1 m/s. The low-temperature
environment temperature is T2 = 300 K. The values
of the height of the heat transfer unit for Newtonian,
Dulong–Petit, linear phenomenological, radiative and
q ∝ (∆(T 4))1.25 heat transfer laws are set to be HTU =
GC/(α1aV 1F1) = 25 m, HTU = GC/(α1aV 1F1T

0.25
2 ) =

29.5 m, HTU = GCT 2
2 /(α1aV 1F1) = −1.9 m,

HTU = GC/(α1aV 1F1T
3
2 ) = 4000 m, and HTU =

GC/(α1aV 1F1T
4
2 ) = 1.2×104 m, respectively. Let τi = 0

and the total fluid flow time is t1 = 150 s, then the
non-dimensional final time for Newtonian, Dulong–Petit,
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Fig. 4. The absorbed heat flux rate q1 of the single-
-stage heat engine versus the Carnot temperature T ′

for different heat transfer laws.

Fig. 5. The efficiency η of the single-stage heat en-
gine versus the Carnot temperature T ′ for different heat
transfer laws.

linear phenomenological, radiative and q ∝ (∆(T 4))1.25

heat transfer laws are τf = 6, τf = 5.085, τf = −78.9,
τf = 0.0375, and τf = 0.0125, respectively. Let k1 = k2,
and the total stage of the heat engine system be N = 100.
The grid division of the non-dimensional time coordi-
nate is linear, so θi = 0.06, θi = 0.051, θi = −0.79,
θi = 3.75 × 10−4 and θi = 1.25 × 10−4 are obtained
for Newtonian, Dulong–Petit, linear phenomenological,
radiative and q ∝ (∆(T 4))1.25 heat transfer laws, respec-
tively.

The high- and the low-temperature reservoir tempera-
tures are set to be T1 = 2800 K and T2 = 300 K, respec-
tively.

Figure 4 shows the absorbed heat flux rate q1 of the
heat engine versus the Carnot temperature T ′ for differ-
ent heat transfer laws. From Fig. 4, one can see that q1

increases linearly with the increase of the Carnot tem-
perature T ′ for Newtonian heat transfer law, while it in-
creases non-linearly for the non-Newtonian heat transfer
laws.

Fig. 6. The power output P of the single-stage heat
engine versus the Carnot temperature T ′ for different
heat transfer laws.

Fig. 7. The entropy generation rate σ of the single-
-stage heat engine versus the Carnot temperature T ′

for different heat transfer laws.

Figure 5 shows the heat engine efficiency η versus the
Carnot temperature T ′ for different heat transfer laws.
Since η = 1−T2/T ′, the efficiency η increases with the in-
crease of T ′ but its relative increment quantity decreases,
which is independent of heat transfer laws. As a result,
there is only one curve in Fig. 5.

Figure 6 shows the power output P of the heat engine
versus the Carnot temperature T ′ for different heat trans-
fer laws. One can see that there is a maximum power P
with respect to T ′.

Figure 7 shows the entropy generation rate σ versus
the Carnot temperature T ′ for different heat transfer
laws. From Fig. 7, one can see that the entropy genera-
tion rate decreases with the increase of the Carnot tem-
perature T ′ for different heat transfer laws. When the
Carnot temperature is small, the entropy generation rate
decreases fast, and its change rate tends to be smooth
with the increase of T ′. From T ′ ≡ T2T1′/T2′ and when
T ′ = T2 = 300 K, the heat-absorbed temperature T1′

of the working fluid in the endoreversible Carnot heat
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engine is equal to its heat-released temperature T2′ , i.e.
the limit Carnot cycle, the heat flux rate q1 absorbed
by the working fluid is equal to that released, the heat
engine efficiency η is equal to zero as shown in Fig. 5,
the power output P of the heat engine is also equal to
zero as shown in Fig. 6, and the entropy generation rate
achieves its maximum value as shown in Fig. 7. While
T ′ = T1 = 2800 K, the heat-absorbed temperature T1′

of the working fluid in the endoreversible Carnot heat
engine is equal to the high-temperature reservoir tem-
perature T1, and the heat-released temperature of the
working fluid is equal to the low-temperature reservoir
temperature T2, i.e. the reversible Carnot cycle. The
rate of heat absorbed q1 is equal to zero as shown in
Fig. 4, the heat engine efficiency achieves its maximum
value and equals to the Carnot efficiency ηC = 1−T2/T1

as shown in Fig. 5, its power P is equal to zero as shown
in Fig. 6, and the entropy generation rate σ is also equal
to zero as shown in Fig. 7.

5.2. Numerical examples for the multistage heat engines
with the linear phenomenological heat transfer law

5.2.1. For fixed final temperature T1f

Let the process time t1 = 150 s, and the final temper-
ature T1f is set to be 1000 K, 1200 K, 1400 K, respec-
tively. Figures 8 and 9 show the optimal driving fluid
temperature T1 and Carnot temperature T ′ versus the

dimensionless time τ for the maximum power output of
the system with the linear phenomenological heat trans-
fer law for the fixed final temperature T1f , respectively.
Figure 10 shows the corresponding optimal power output
Ẇi of each stage heat engine versus the stage i. The total
stage N = 100 heat engines are shown with the step of 2
in Figs. 8–10.

Fig. 8. The optimal driving fluid temperature T1 ver-
sus the dimensionless time |τ | for the linear phenomeno-
logical heat transfer law (fixed T1f).

TABLEOptimization results of the key parameters of the multistage endoreversible heat engine system
with different heat transfer laws.

Case Key
parameters

m = 1, n = 1

[54]
m = 1.25, n = 1

[54]
m = 1, n = −1 m = 1, n = 4 m = 1.25, n = 4

Fixed T1f

(t1 = 150 s)

T1f = 1000 K
T ′(0) 1839.0 K 1574.6 K 1604.3 K 850.6 K 868.7 K

Ẇmax 7.02× 104 W 6.59× 104 W 7.11× 104 W 4.17× 104 W 4.23× 104 W

T1f = 1200 K
T ′(0) 2009.2 K 1746.1 K 1688.3 K 943.7 K 939.5 K

Ẇmax 6.58× 104 W 6.29× 104 W 6.51× 104 W 4.48× 104 W 4.45× 104 W

T1f = 1400 K
T ′(0) 2153.1 K 1899.0 K 1780.0 K 1026.2 K 1000.6 K

Ẇmax 5.96× 104 W 5.77× 104 W 5.84× 104 W 4.41× 104 W 4.32× 104 W

Free T1f

t1 = 50 s
T∗1f 1590.9 K 1613.6 K 950.5 K 1604.7 K 1489.6 K

T ′(0) 1217.1 K 1098.5 K 773.3 K 750.3 K 764.0 K

Ẇ∗
max 4.32× 104 W 4.03× 104 W 5.29× 104 W 3.03× 104 W 3.25× 104 W

t1 = 100 s
T∗1f 1083.8 K 1160.3 K 507.0 K 1371.6 K 1305.6 K

T ′(0) 1471.2 K 1334.6 K 1104.1 K 875.2 K 870.2 K

Ẇ∗
max 6.20× 104 W 5.71× 104 W 7.38× 104 W 3.94× 104 W 4.00× 104 W

t1 = 150 s
T∗1f 838.0 K 933.6 K 412.8 K 1244.5 K 1205.7 K

T ′(0) 1674.1 K 1512.4 K 1377.8 K 962.3 K 941.3 K

Ẇ∗
max 7.16× 104 W 6.61× 104 W 8.16× 104 W 4.49× 104 W 4.45× 104 W

Table lists optimization results of the key parameters
of the multistage endoreversible heat engine system with
different heat transfer laws. From Figs. 8 and 9, one can
see that the driving fluid temperature T1 and the Carnot
temperature T ′ decrease with the increase of time |τ |
linearly and non-linearly, respectively.

References [25, 65, 69–71] showed that the difference
of reciprocal temperatures of the heat reservoir and the
working fluid for the maximum work output of the recip-
rocating endoreversible heat engine with the linear phe-
nomenological heat transfer law is a constant, and the
reservoir temperature decreases with the time linearly;
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Fig. 9. The optimal Carnot temperature T ′ versus the
dimensionless time |τ | for the linear phenomenological
heat transfer law (fixed T1f).

Fig. 10. The optimal power output Ẇi of each stage
heat engine versus the stage i for the linear phenomeno-
logical heat transfer law (fixed T1f).

Refs. [3, 63, 64, 72–74] also showed that the difference of
reciprocal temperatures of the high- and low-temperature
sides for the minimum entropy generation of heat transfer
processes with the linear phenomenological heat trans-
fer law is a constant, and the high-temperature reservoir
temperature decreases with the time linearly.

For the optimization problem with the fixed final tem-
perature T1f considered herein, optimization for maxi-
mizing power output is equivalent to that for minimizing
entropy generation rate. This is the unified characteris-
tic of the dynamic optimization for the system with the
linear phenomenological heat transfer law. The profiles
of the temperatures T1 and T ′ versus the time |τ | are
different final temperatures T1f .

From Table, one can see that with the increase of final
temperature T1f , the initial Carnot temperature T ′(0) in-
creases, while the maximum power output Ẇmax of the
system decreases. This is due to that the total heat in-
put of the system decreases with the increase of the final

temperature, and the total power output also decreases.
However, the temperature of the high-temperature reser-
voir for each stage heat engine increases, and then the
efficiency of the corresponding heat engine also increases
in order to realize the optimal matching between the mul-
tistage heat engine system and the fluid reservoir.

Since T ′ = T2/(1−η), the Carnot temperature of each
stage heat engine also increases as shown in Fig. 9. From
Fig. 10, one can see that the power output Ẇi of each
stage heat engine decreases non-linearly with the increase
of the stage i for different final temperatures T1f . This is
mainly due to that the high-temperature side fluid reser-
voir temperature decreases with the heat absorbed by the
working fluid of the heat engine. For the same stage i, the
power output Ẇi decreases with the increase of the final
temperature T1f . This is due to that the heat absorbed
by each stage heat engine decreases with the increase of
the final temperature T1f .
5.2.2. For free final temperature T1f

The process period t1 is set to be 50 s, 100 s, and
150 s, respectively. Figures 11 and 12 show the optimal
driving fluid temperature T1 and Carnot temperature T ′

versus the dimensionless time |τ | for the maximum power
output of the system with the linear phenomenological
heat transfer law for the free final temperature T1f .

Fig. 11. The optimal driving fluid temperature T1 ver-
sus the dimensionless time |τ | for the linear phenomeno-
logical heat transfer law (free T1f).

Figure 13 shows the corresponding optimal power out-
put Ẇi of each stage heat engine versus the stage i. From
Figs. 11 and 12, one can see that the driving fluid temper-
ature T1 and the Carnot temperature T ′ decrease with
the increase of time |τ | linearly and non-linearly, respec-
tively. What should be paid attention is that optimiza-
tion for maximum power output is not equivalent to that
for minimum entropy generation when the final temper-
ature T1f is free. When the final fluid temperature T1f

is equal to its initial temperature T10, the entropy gen-
eration achieves its minimum value and is equal to zero,
while the corresponding power output is also zero; there
is an optimal final temperature T ∗1f for the power out-
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Fig. 12. The optimal Carnot temperature T ′ versus
the dimensionless time |τ | for the linear phenomenolog-
ical heat transfer law (free T1f).

put to achieve its maximum value, however, the corre-
sponding entropy generation is not equal to zero. For
the cases with different process periods t1, the optimal
final temperatures T ∗1f are not equal to each other, and
the optimal temperatures T1 and T ′ versus the time τ
are also different. This shows that the changes of the
total period constraints have effects on the driving fluid
temperature distribution and the corresponding optimal
control for the maximum power output of the multistage
heat engine system.

Fig. 13. The optimal power output Ẇi of each stage
heat engine versus the stage i for the linear phenomeno-
logical heat transfer law (free T1f).

From Fig. 13, one can see that the power output Ẇi

of each stage heat engine decreases with the increase of
the stage i. This is mainly due to that with each stage
heat engine absorbing heat from the fluid reservoir, the
driving fluid temperature T1 decreases with the increase
of the time |τ |. From Table, one can see that with the in-
crease of the process period t1, the optimal final temper-
ature T ∗1f decreases, the maximum power output Ẇ ∗

max of
the system increases, and the initial Carnot temperature

T ′(0) also increases. This is mainly due to that the heat-
-work conversion ability of the system is improved with
the increase of the total heat transfer area, i.e. the sys-
tem can transform much more heat of the fluid reservoir
to the power output. As a result, the final fluid reservoir
temperature decreases, and the total power output of the
system increases.

Also from Fig. 13, one can see that when the stage i is
small, the power output Ẇi increases with the increase of
the total time t1, while the stage i is large, the power out-
put Ẇi decreases with the increase of the total time t1.
It is evident that the optimal profiles of the power out-
put Ẇi of each stage heat engine versus the stage i are
different for different total process period t1.

5.3. Comparison of the optimization results
with different heat transfer laws

5.3.1. For the fixed final temperature T1f

Let the total time t1 = 150 s and the final tempera-
ture T1f = 1000 K. Figures 14 and 15 show the optimal
fluid temperature T1 and optimal Carnot temperature T ′

versus the time t for the fixed final temperature T1f and
different heat transfer laws, respectively.

Fig. 14. The optimal driving fluid temperature T1 ver-
sus the time t for different heat transfer laws (fixed T1f).

Figure 16 shows the optimal power output Ẇi of each
stage heat engine versus the stage i for different heat
transfer laws. From Fig. 14, one can see that the op-
timal driving fluid temperature T1 for Newtonian heat
transfer law decreases with the time t exponentially; the
optimal driving fluid temperature T1 for the linear phe-
nomenological heat transfer law decreases with the time t
linearly; the optimal driving fluid temperature T1 for the
Dulong–Petit heat transfer law decreases with the time t
nonlinearly, and is slightly lower than that with Newto-
nian heat transfer law; the driving fluid temperatures T1

for the radiative and q ∝ (∆(T 4))1.25 heat transfer laws
also decrease with the time t non-linearly, and are lower
than all of the former three special heat transfer laws.

From Fig. 15, one can see that the optimal profiles of
the Carnot temperature versus the time t for different



Endoreversible Modeling and Optimization . . . 757

Fig. 15. The optimal Carnot temperature T ′ versus
the time t for different heat transfer laws (fixed T1f).

heat transfer laws are different from each other signifi-
cantly, the optimal T ′–t curve for the linear phenomeno-
logical heat transfer law is upward-convex, while those
for the other heat transfer laws are downward-concave.
Besides, the initial and final point values of each curve
are also not equal to each other.

From Table, one can see that the maximum power out-
put of the system for Newtonian heat transfer law and the
corresponding optimal control are Ẇmax = 7.02× 104 W
and T ′(0) = 1839.0 K, respectively; for the Dulong–Petit
heat transfer law, Ẇmax = 6.59 × 104 W and T ′(0) =
1574.6 K; for the linear phenomenological heat transfer
law, Ẇmax = 7.11 × 104 W and T ′(0) = 1604.3 K; for
q ∝ (∆(T 4))1.25 heat transfer law, Ẇmax = 4.17× 104 W
and T ′(0) = 850.6 K; for the q ∝ (∆(T 4))1.25 heat trans-
fer law, Ẇmax = 4.23 × 104 W and T ′(0) = 868.7 K.
This shows that when the final temperature T1f is fixed,
the maximum power outputs of the multistage heat en-
gine system and the corresponding optimal controls are
different for different heat transfer laws.

Fig. 16. The optimal power output Ẇi of each stage
heat engine versus the stage i for different heat transfer
laws (fixed T1f).

From Fig. 16, one can see that the power outputs
Ẇi of each stage heat engine with Newtonian, Dulong–
Petit and radiative heat transfer laws decrease with
the increase of the stage i non-linearly, and the differ-
ence among them also increases with the increase of the
stage i; compared to the results for the above three spe-
cial heat transfer laws, the difference among the power
output Ẇi of each stage heat engine for the linear phe-
nomenological heat transfer law are small. It is evident
that heat transfer laws have effects on the maximum
power output of the multistage heat engine system and
the corresponding optimal configuration of the driving
fluid temperature.
5.3.2. For the free final temperature T1f

Let the total time t1 = 150 s. Figures 17 and 18 show
the optimal fluid temperature T1 and optimal Carnot
temperature T ′ versus the time t for the free final temper-
ature T1f and different heat transfer laws, respectively.

Fig. 17. The optimal driving fluid temperature T1 ver-
sus the time t for different heat transfer laws (free T1f).

Fig. 18. The optimal Carnot temperature T ′ versus
the time t for different heat transfer laws (free T1f).

Figure 19 shows the optimal power output Ẇi of each
stage heat engine versus the stage i for different heat



758 S. Xia, L. Chen, F. Sun

Fig. 19. The optimal power output Ẇi of each stage
heat engine versus the stage i for different heat transfer
laws (free T1f).

transfer laws. When the final temperature T1f is free,
the optimal profiles of the driving fluid temperature T1

versus the time t for the cases with different heat transfer
laws are different significantly.

From Table, one can see that the optimal final temper-
ature for Newtonian heat transfer law is T ∗1f = 838.0 K,
the optimal control is T ′(0) = 1674.1 K, and the max-
imum power output is Ẇ ∗

max = 7.16 × 104 W; for the
Dulong–Petit heat transfer law, T ∗1f = 933.6 K, T ′(0) =
1512.4 K and Ẇ ∗

max = 6.61 × 104 W; for the linear
phenomenological heat transfer law, T ∗1f = 412.8 K,
T ′(0) = 1377.8 K and Ẇ ∗

max = 8.16×104 W; for the radia-
tive heat transfer law, T ∗1f = 1244.5 K, T ′(0) = 962.3 K
and Ẇ ∗

max = 4.49 × 104 W; for the heat transfer law
[q ∝ (∆(T 4))1.25], T ∗1f = 1205.7 K, T ′(0) = 941.3 K and
Ẇ ∗

max = 4.45 × 104 W. This shows that when the final
temperature T1f is free, heat transfer laws also have ef-
fects on the maximum power output of the multistage
heat engine system and the corresponding optimal con-
figuration of the driving fluid temperature.

From Fig. 19, one can see that the power outputs
Ẇi of each stage heat engine with Newtonian, Dulong–
Petit and radiative heat transfer laws decrease with the
increase of the stage i non-linearly, but the difference
among them decreases with the increase of the stage i,
this is different from that for the case with the fixed
final temperature T1f ; compared to the results for the
above three special heat transfer laws, the allocation of
the power output Ẇi of each stage heat engine for the lin-
ear phenomenological heat transfer law is not relatively
uniform along the stage i as the same as the case with
the fixed final temperature T1f , and its relative change
quantity increases with the increase of the stage i. This
shows that both heat transfer laws and boundary con-
dition constraints have significant effects on the power
output of the multistage heat engine system.

6. Conclusion

On the bases of Refs. [5, 7, 11, 32–55], this paper
has further investigated the multistage endoreversible
Carnot heat engine system operating between a finite
thermal capacity high-temperature fluid reservoir and an
infinite thermal capacity low-temperature environment
with a generalized heat transfer law [q ∝ (∆(Tn))m],
which includes the generalized convective heat transfer
law [q ∝ (∆T )m] and the generalized radiative heat
transfer law [q ∝ ∆(Tn)]. For the fixed initial time and
fixed initial temperature of the driving fluid, the contin-
uous Hamilton–Jacobi–Bellman (HJB) equations related
to the optimal fluid temperature configurations for max-
imum power output have been obtained by applying op-
timal control theory. Based on the general optimization
results, the analytical solution for Newtonian heat trans-
fer law (m = 1, n = 1) has further been obtained.

While for the other heat transfer laws, there are no an-
alytical solutions, so the continuous HJB equations have
been discretized and the DP algorithm is adopted to ob-
tain the complete numerical solutions of the optimization
problem.

Numerical examples for two special cases with the lin-
ear phenomenological and radiative heat transfer laws
are given, and optimization for every heat transfer law
is performed under two different boundary conditions in-
cluding the fixed and free final fluid temperatures, and
the results for five different special heat transfer laws in-
cluding Newtonian, linear phenomenological, radiative,
Dulong–Petit, and q ∝ (∆(T 4))1.25 heat transfer laws
are also compared to each other.

The results show that when the process period is fixed,
the low limit of the final fluid temperature is higher than
the environment temperature, i.e. the temperature of the
driving fluid at the high-temperature side cannot de-
crease to that of the environment at the low-temperature
side in a finite time; when the final temperature of the
driving fluid is fixed, there is a low limit for the process
period, i.e. the process period must be larger than this
low limit so that the system can produce power output,
and optimization for maximizing power output is equiva-
lent to that for minimizing entropy generation rate. Be-
sides, if the process period tends to infinite long, the
maximum power output of the multistage heat engine
system tends to its reversible power performance limit.

When both the process period and the final fluid tem-
perature are fixed, there is an optimal control strategy for
the power output of the multistage heat engine system
to achieve its maximum value, and the maximum power
outputs and the corresponding optimal control strategies
are different for different final fluid temperatures.

When the final fluid temperature is free, optimization
for maximizing power output is not equivalent to that for
minimizing entropy generation rate, however, if the pro-
cess period is fixed further, there is an optimal final fluid
temperature for the power output of the multistage heat
engine system to achieve its maximum value, and the
maximum power outputs and the corresponding optimal
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control strategies are also different for different process
periods.

When the process period and the final fluid temper-
ature tend to infinite long and the environment tem-
perature, respectively, the maximum power output of
the multistage heat engine system tends to the classical
fluid thermodynamic exergy function. The optimal high-
-temperature fluid reservoir temperature for the maxi-
mum power output of the multistage heat engine system
with Newtonian and linear phenomenological heat trans-
fer laws decrease with time exponentially and linearly, re-
spectively, while those with Dulong–Petit, radiative and
q ∝ (∆(T 4))1.25 heat transfer laws are different from the
former two cases significantly.

All of the optimization objectives, boundary condi-
tions, and heat resistance models have significant effects
on the results of optimization problems, so changes of
these key factors should be considered and clarified for
practical optimization problems. Real energy conversion
and transfer processes always happen in a finite time, and
there are heat resistances of the boundary layer between
the reservoirs and the energy converters necessarily, so
the results obtained in this paper provide a new thermo-
dynamic performance limit for heat-work conversion of
fluid flow processes, which is different from that given by
the classical thermodynamics, and can provide some the-
oretical guidelines for the optimal designs and operations
of practical energy conversion and transfer processes and
systems.
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