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We study the magnetic properties of a mixed Ising ferrimagnetic system, in which the two interacting
sublattices have spins σ, (± 1

2
) and spins S, (± 3

2
,± 1

2
) in the presence of a random crystal field, with the mean field

approach. The results obtained, using mean field approach and Monte Carlo simulation, show the appearance
of a new ferrimagnetic phase, namely the partly ferrimagnetic phase (mσ = −1

2
, mS = +1). Consequently, three

topologically different types of phase diagrams have been given by mean field approach. The effect of increasing
the exchange interaction parameter J , at very low temperature is also investigated.

PACS: 05.50.+q, 75.10.Hk, 75.50.Gg

1. Introduction

Recently, many authors have studied both experimen-
tally and theoretically the magnetic properties of mixed
spins 1/2 and spins S > 1/2 Ising system, with a crystal
field interaction. In fact, crystal-field interaction effects
on the transition temperature have been investigated by
several methods such as effective field theory [1–4], finite
cluster approximation [5], mean field theory [6], Migdal–
Kadanof renormalisation group method [7] and cluster
variational method [8]. Nevertheless, some disagreements
between theoretical studies, such as the existence of tri-
critical points, have occurred. Experimental studies have
shown that the complex MnNi(EDTA)–6H2O is a good
example of a mixed spin system [9].

On the other hand, important advances have been
made in the synthesis of two- and three-dimensional
ferrimagnets, such as 2d organo-metallic ferrimagnets
[10, 11], and 2d networks of the mixed-metal materials
[P(Phenyl)4][MnCr(oxalate)3]n [12]. Other interests in
the mixed spin Ising models can be related to the mod-
elling of magnetic structures suitable for describing a
ferrimagnetism of certain classes of insulating materi-
als. In fact, the mixed systems provide simple but in-
teresting models to study molecular magnetic materials
and magneto-optical recording materials [13, 14]. Fur-
thermore, the appearance of many compensation points
in a variety of ferrimagnetic systems has been pointed
out theoretically [15, 16]. Since the ferrimagnetic order
plays an important role in these materials, the investiga-
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tion of ferrimagnetism in mixed spin systems has rapidly
become a field of interest. As these systems consist of
two interpenetrating and none̋quivalent sublattices, they
have lower translational symmetry than their single-spin
counterparts.

On the other hand, many different methods have been
employed in the study of the mixed spin 1/2 and spin 1
Ising model [17, 18], and this system has been solved ex-
actly in special cases. Nevertheless, new magnetic prop-
erties and compensation behaviors are found for mixed
spins in the presence of a crystal-field [19] as they were
predicted by Néel theory of ferrimagnetism [20].

The mean-field theory approach, based on the bo-
golyubov inequality for the gibbs free energy [21], showed
that the obtained phase diagrams exhibit a variety of
multicritical points such as tricritical points and isolated
critical points. on the other hand, we have shown in some
of our recent works [22, 23] the existence of interesting
properties in the magnetization behavior and phase dia-
grams in the presence of a random crystal-field.

The purpose of this work is to study, using the mean
field approximation (MFA), the influence of crystal-field
disorder on the phase diagrams and magnetization of a
mixed-spin ferrimagnetic Ising system, in which the two
interpenetrating sublattices have spin values σ = ± 1

2 and
S = ± 3

2 ,± 1
2 . The most interesting result emerging from

this study is the appearance of different types of phase
diagrams, in the particular case of two-valued distribu-
tion of crystal-field. Consequently, three topologically
different types of phase diagrams occur. This paper is
organized as follows: in Sect. 2, we introduce the model
and give the details of the MFA. The ground-state phase
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diagram is discussed in Sect. 3. In Sect. 4 we present
and discuss our results. Finally, in Sect. 5 we give our
conclusions.

2. Model and method

The MFA method is used to study the behavior of
complex spin systems, such as the ferrimagnetic mixed
Ising models. The model we are studying consists of two
interpenetrating sublattices. One sublattice has spins σ
assumed to take the values ± 1

2 , the other sublattice has
spins S that can take four values: ± 3

2 , and ± 1
2 . The

spins S have only the spins σ as nearest neighbors and
vice versa. The interaction between the spins σ and S
is assumed to be an antiferromagnetic exchange. The
Hamiltonian of this model is written as

H = J
∑

〈ij〉
σiSj +

N/2∑

i=1

∆iS
2
i , (1)

where N is the total number of lattice sites. The ex-
change interaction parameter J is assumed to be posi-
tive. The first summation is carried out only over near-
est pairs of spins and ∆i is a quenched random crystal
field distributed according to the probability distribution
[22–25]:

P(∆i) =
1
2

[δ(∆i −∆(1 + α)) + δ(∆i −∆(1− α))] ,

(2)
where α is a positive constant.

An analogous probability distribution has been used to
investigate the critical behavior of 3He–4He mixtures in
random media (aerogel) modeled by the spin 1 Blume–
Capel model. In this model, a negative crystal-field value
represents the field at the pore-grain interface and a pos-
itive value is a bulk field that controls the concentration
of 3He atoms [26–28].

The variational principle based on the Gibbs–
Bogolyubov inequality for the free energy per site is de-
scribed by [29–31]:

F ≤ Φ = −T log(Z0) + 〈H −H0〉0 . (3)

One can denote by hσ and hS the molecular fields as-
sociated with the order parameters mσ = 〈σ〉0 and
mS = 〈S〉0, respectively, expressed as

hσ = J

z∑

j=1

〈Sj〉0 = zJmS , (4)

hS = J

z∑

j=1

〈σj〉0 = zJmσ , (5)

where z is the number of nearest neighbors and 〈. . .〉0 =
Tr... exp(−βH0)
Tr exp(−βH0)

, denotes the average value performed over
the Hamiltonian H0.

The effective Hamiltonian of the system is given by

H0 = hσ

N/2∑

i=1

σi + hS

N/2∑

i=1

Si +
N/2∑

i=1

∆iS
2
i . (6)

The partition function generated by the above Hamilto-
nian is given by

Z0 = Tr
(

exp
(
−H0

T

))
=

[
2 cosh

(
βhσ

2

)]N/2

×
[
2 exp

(−9β∆i

4

)
cosh

(
3βhS

2

)

+2 exp
(−β∆i

4

)
cosh

(
βhS

2

)]N/2

, (7)

where T is absolute temperature and β = 1/T . Boltz-
mann’s constant has been set to unity. The total free
energy is given by

Φ =
NJzmσmS

2
− Nhσmσ

2
− NhSmS

2

−NT

∫
log(Z0)P(∆i)d∆i . (8)

After the integration over the probability distribution,
the free energy per spin is expressed as

Φ
N

=
JzmσmS

2
− hσmσ

2
− hSmS

2

− T

2

[
log

(
2 cosh

hσ

2T

)

+
1
2

(
log

(
2 exp

(
−9∆(1 + α)

4T

)
cosh

(
3hS

2T

)

+2 exp
(
−∆(1 + α)

4T

)
cosh

(
hS

2T

))

+ log
(

2 exp
(
−9∆(1− α)

4T

)
cosh

(
3hS

2T

)

+2 exp
(
−∆(1− α)

4T

)
cosh

(
hS

2T

)))]
. (9)

In order to investigate the magnetization of the sys-
tem, the order parameters mσ and mS are defined by
minimizing the free energy.

The mean-field equations of state are given by

mσ = −1
2

tanh
( z

2t
JmS

)
, (10)

and

mS = −1
2

(
A

B
+

C

D

)
, (11)

where

A = 3 exp
(
−9d

4t
(1 + α)

)
sinh

(
3zmσ

2t

)
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+ exp
(
− d

4t
(1 + α)

)
sinh

(zmσ

2t

)
,

B = 2 exp
(
−9d

4t
(1 + α)

)
cosh

(
3zmσ

2t

)

+2 exp
(
− d

4t
(1 + α)

)
cosh

(zmσ

2t

)
,

C = 3 exp
(
−9d

4t
(1− α)

)
sinh

(
3zmσ

2t

)

+ exp
(
− d

4t
(1− α)

)
sinh

(zmσ

2t

)
,

D = 2 exp
(
−9d

4t
(1− α)

)
cosh

(
3zmσ

2t

)

+2 exp
(
− d

4t
(1− α)

)
cosh

(zmσ

2t

)
.

In the above equations, and in all that follow, t and d

denote the reduced temperature T/J and the reduced
crystal field ∆/J , respectively. The coordination number
z is set to 4 (square lattice).

The solutions of Eqs. (10)–(11) are not unique, the sta-
ble solutions are those minimizing the free energy Eq. (9),
while the solutions are unstable. If the order parameters
are continuous (discontinuous), the transitions are of sec-
ond (first) order.

3. Ground state

The ground state phase diagram of the system un-
der investigation is illustrated in Fig. 1. Indeed, for
very low temperatures and depending on the values of
α ≥ 0 and the reduced crystal field d. Equations
(10)–(11) lead to three solutions: (mσ = −1

2 ,mS = 3
2 ),

(mσ = −1
2 ,mS = 1

2 ), and (mσ = −1
2 ,mS = 1). By com-

paring the energies of all configurations, we established
the ground state phase diagram. This phase diagram is
drawn in the reduced (d, α) plane. One can distinguish
four cases:

1) For α = 0, a first order transition point between
the phase (mσ = − 1

2 , mS = 3
2 ) and the phase (mσ =

−1
2 ,mS = 1

2 ) occurs at d = +1.
2) For 0 < α < 1, two first-order transition lines occur:

one between the phase (mσ = − 1
2 ,mS = 3

2 ) and the
phase (mσ = −1

2 ,mS = 1) separated by the equation
line d = z/[4(1 + α)] and the other between the phase
(mσ = −1

2 ,mS = 1) and the phase (mσ = −1
2 ,mS = 1

2 )
separated by the equation line d = z/[4(1− α)].

3) For α = 1, a first order transition point between the
phase (mσ = −1

2 ,mS = 3
2 ) and the ferrimagnetic phase

(mσ = −1
2 ,mS = 1) appears at d = 1

2 .
4) For α > 1, two first-order transition lines be-

tween the (mσ = −1
2 , mS = 1) phase and the (mσ =

Fig. 1. The ground state phase diagram established in
the (d, α) plane. (mσ = −1

2
, mS = 1

2
), (mσ = −1

2
,

mS = 3
2
) and (mσ = −1

2
, mS = 1) are the only stable

phases at very low temperature.

−1
2 ,mS = 3

2 ) phase and the (mσ = −1
2 ,mS = 3

2 )
phase and the (mσ = −1

2 ,mS = 1) phase occur at
d = z/[4(1− α)] and d = z/[4(1 + α)], respectively.

It is worth to note that for d = 0, only the phase
(mσ = −1

2 ,mS = 3
2 ) is stable at T = 0 K, and α = 0

corresponds to mixed spin (mσ = 1
2 ,mS = 3

2 ) model
with nonrandom crystal-field.

4. Phase diagrams and discussions

4.1. Phase diagrams

A detailed discussion dealing with finite temperature
phase diagrams is presented in this section. For this
purpose, we solve numerically Eqs. (9), (10) and (11).
A rich variety of phase diagrams is observed both when
varying α in the (tc = Tc/J, d) plane, and d in the
(tc, α) plane. The critical temperature is plotted as a
function of d for α = 0 (Fig. 2a), α = 0.5 (Fig. 2b),
α = 1 (Fig. 2c) and α = 2 (Fig. 2d). In Fig. 2a,
the paramagnetic (mσ = 0,mS = 0) and ferrimagnetic
phases (mσ = −1

2 ,mS = 3
2 ) and (mσ = −1

2 ,mS = 1
2 )

are separated by a second-order transition line. A first-
-order transition line separating the above phases is ob-
served at very low temperature. This first-order transi-
tion line is terminated by an isolated critical point lo-
cated at (dtr = 1, ttr = 0.06). Above this last point,
a continuous passage occurs between the two ferrimag-
netic phases. Whereas, for α = 0.5 (Fig. 2b), two first-
-order transition lines appear at low temperature. The
first one separates the phases (mσ = −1

2 ,mS = 3
2 ) and

(mσ = −1
2 , mS = 1), and terminates at an isolated crit-

ical point located at dtr = 0.667, ttr = 0.11. The sec-
ond first-order transition line separates the ferrimagnetic
phases (mσ = −1

2 ,mS = 1) and (mσ = −1
2 , mS = 1

2 ),
and terminates at an isolated critical point located at
dtr = 2, ttr = 0.04.

In Fig. 2c, plotted for α = 1, the phase (mσ = −1
2 ,

mS = 1
2 ) is absent at low temperature and the only first-

-order transition line, present in this region, separates
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Fig. 2. The critical temperature as a function of d plot-
ted for: α = 0 (a), α = 0.5 (b), α = 1 (c) and α = 2 (d).
The full lines correspond to the second-order transitions,
whereas the dashed lines represent the first-order tran-
sitions. The tiny circles denote isolated critical points.

the phases (mσ = −1
2 ,mS = 3

2 ) and (mσ = −1
2 , mS = 1),

and terminated at an isolated critical point located at
(dtr = 0.5, ttr = 0.09).

In Fig. 2d, the system exhibits two first-order transi-
tion lines, at very low temperature, terminated by two
isolated critical points: the first at d = −1, t = 0.11
and the second located at d = 1

3 , t = 0.19. The two
lines separate the phases (mσ = −1

2 ,mS = 1) and
(mσ = −1

2 ,mS = 3
2 ), and the phases (mσ = −1

2 ,mS = 3
2 )

and (mσ = −1
2 ,mS = 1), respectively.

It is worthwhile to note that our results concerning
the appearance, at low temperature, of first-order tran-
sition line terminated by an isolated critical point is in
agreement with other works as MFA [6] and Monte Carlo
[32, 33]. To give more details concerning the first-order
transition lines, the free energy and entropy of the sys-
tem are calculated at low temperature. The free energy
and entropy are plotted as function of d for t = 0.035
and two α values: 0.25 and 1, in Fig. 3a and b, respec-
tively. In agreement with Fig. 2b and c, a discontinuous
change of the free energy slope at first-order transition
temperatures is observed. Consequently the entropy is
discontinuous at these temperatures (see inset of Fig. 3a
and b). For the second-order transition lines, the total
free energy and entropy are plotted versus temperature,
for α = 0.25 and d = −3 (see Fig. 3c). The entropy
varies discontinuously at a second-order transition tem-
perature. As consequence, the specific heat will exhibit
a discontinuity at this transition temperature.

In order to outline the effect of the parameter α we
plot, in Fig. 4, the transition temperatures tc for several
values of the crystal field d. Indeed, for d = 2, Fig. 4a
shows the existence of a second-order transition line be-
tween the paramagnetic and the ferrimagnetic phases and
a first-order transition between the ferrimagnetic phases

Fig. 3. In (a) and (b), the free energy and entropy
(from expressions developed at low temperature) are
plotted versus the reduced crystal-field d for t = 0.035
and two α values: 0.25 and 1, respectively. In (c), the
same physical quantities are plotted as a function of
temperature for α = 0.25 and d = −3.

(mσ = −1
2 ,mS = 1

2 ) and (mσ = −1
2 ,mS = 1) terminated

at an isolated critical point, α = 1.5, t = 0.055. Whereas
for d = 0 (Fig. 4b), the second order transition line from
the ferrimagnetic phase to the paramagnetic phase is in-
dependent of α because of the absence of the crystal-
-field. A first order transition line separating the phases
(mσ = −1

2 ,mS = 3
2 ) and (mσ = −1

2 ,mS = 1) is ob-
tained for d = −1 as shown in Fig. 4c, which terminates
at an isolated critical point α = 2, t = 0.09 between the
ferrimagnetic and partly ferrimagnetic phases. At high
temperatures, a second-order transition line between the
ferrimagnetic phase and the paramagnetic phase is found.
To complete this study, the effect of increasing the ex-
change interaction parameter J , at very low tempera-
ture, keeping α constant have been investigated. The
results we found for low temperature and selected val-
ues of α, showed that the transitions obtained in the
ground state phase diagram (Fig. 1) are still present. For
α = 0.5, Fig. 5a shows that the system can exhibit the
phases (mσ = −1

2 , mS = 3
2 ), (mσ = −1

2 , mS = 1) and
(mσ = −1

2 ,mS = 1
2 ) when increasing the parameter ∆ at

any constant coupling J value. For α = 1, the system un-
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Fig. 4. The transition temperatures tc as a function of
the parameter α for selected values of the crystal field:
d = 2 (a), d = 0 (b), and d = −1 (c).

dergoes a transition from the phase (mσ = −1
2 ,mS = 3

2 )
to the phase (mσ = −1

2 ,mS = 1) when increasing the
crystal field ∆ (see Fig. 5b). For a large value of α
(α = 2), Fig. 5c shows that the effect of increasing the
parameter ∆ on the phase transitions is to favour the
phase (mσ = −1

2 ,mS = 1).

4.2. Magnetic properties

In this section, we focus our interest on the magneti-
zations which charaterise the various phases seen in the
previous phase diagrams as a function of the crystal field
d and the parameter α, for fixed temperature values. Fig-
ure 6a–c shows the temperature dependence of magneti-
zations as a function of d for α = 0, α = 0.5 and α = 1,
respectively. In Fig. 6a, the magnetization mS shows a
jump and a continuous passage from 3

2 to 1
2 at tempera-

tures below and above the temperature corresponding to
the isolated critical point, respectively. Figure 6b shows a
double jump in the magnetization mS , at a very low tem-
perature, from 3

2 to 1 and from 1 to 1
2 , and a continuous

passage at a temperature greater than the temperature
corresponding to the isolated critical points. The same
behaviour of the magnetization mS , found in Figs. 6a and
b is also seen in Fig. 6c for α = 1. This is in agreement
with Fig. 2c.

The re-entrant behavior found in Fig. 2d, is well il-
lustrated in Figs. 7a and b, where the magnetizations
mσ and mS are plotted, for α = 2, at two tempera-
tures t = 2.2 and t = 2.3, respectively. Figure 7a shows

Fig. 5. Phase diagrams in the plane (∆, J), at very
low temperature t = 0.025 for α = 0.5 (a), α = 1
(b) and α = 2 (c). In (a) the system exhibits the
phases (mσ = −1

2
, mS = 1

2
), (mσ = −1

2
, mS = 1)

and (mσ = −1
2

, mS = 3
2
), in (b) the system under-

goes a transition from the phase (mσ = −1
2

, mS = 1)
to the phase (mσ = −1

2
, mS = 3

2
), while (c) shows

the phases (mσ = −1
2

, mS = 1
2
), (mσ = −1

2
, mS = 1)

and (mσ = −1
2

, mS = 3
2
) when increasing the exchange

interaction parameter J for fixed values of the crystal
field ∆.

that for t = 2.2, the magnetizations mσ,mS and conse-
quently M = (mσ + mS)/2 drop to zero in the region
0 < d < 3.5. This is in good agreement with Fig. 2d. On
the other hand, Fig. 7b shows that for a higher tempera-
ture (t = 2.3) this phenomenon is inverted in the region
−3 < d < 0, so that the magnetizations mσ,mS , and
consequently M = (mσ + mS)/2, are zero outside of this
region. This is once again in agreement with Fig. 2d.

The behavior of the magnetizations mσ,mS , and M =
(mσ + mS)/2 as a function of the parameter α for fixed
values of crystal field and temperature has been investi-
gated. Figure 8a and b shows these magnetizations as
a function of α for d = 2, t = 2 and d = −1, t = 2.5,
respectively. Figure 8a shows that for positive values of
the crystal field, the effect of the increasing α values is to
favorize the ordered phase, in a region of temperatures
lower than tc. For a negative value of the crystal field,
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this phenomenon is inverted as it is shown in Fig. 8b,
plotted for d = −1. One can note that the results found
in Fig. 8a and b, are in good agreement with those illus-
trated in Fig. 4a and c, respectively. On the other hand,
it is obvious that the magnetizations are independent of
the parameter α in the absence of a crystal field, as is
well illustrated in Fig. 4b.

In order to confirm the appearance of the partly ferri-
magnetic phase (mσ = −1

2 , mS = 1) found from the MFA
calculations, Monte Carlo simulations implemented un-
der the Metropolis algorithm have been performed. In-
deed, a square lattice of linear size L = 180 with periodic
boundary conditions have been considered. The initial
20000 MCS (Monte Carlo steps) until the system enters
in a stationary regime are discarded. Then, more than
10000 MCS have been used to calculate the averages of
the quantities of interest, namely the sublattice magneti-
zations per spin, 〈mσ〉 = 1

N

∑
i σi and 〈mS〉 = 1

N

∑
i Si.

Fig. 6. The magnetization mS as a function of the re-
duced crystal-field d for a fixed value of α at fixed re-
duced temperatures value: α = 0 and (t = 0.05 and
t = 0.22) (a), α = 0.5 and (t = 0.0035, t = 0.08 and
t = 0.22) (b) and α = 1 (t = 0.04 and t = 0.22) (c),
respectively.

Figure 9 shows the sublattice magnetisations for α =
0.5 and d = 0.5 (a), d = 1 (b) and d = 3 (c). It is clearly
seen from Fig. 9a–c that the sublattice magnetizations
mS starts at T = 0 K at mS = 3/2, 1 and 1/2, respec-

Fig. 7. The magnetizations mS , mσ and M = (mσ +
mS)/2 as functions of the reduced crystal-field d for
α = 2, and two temperature values: t = 2.2 (a) and
t = 2.3 (b), respectively.

Fig. 8. The magnetizations mσ, mS , and M = (mσ +
mS)/2 as function of the parameter α for fixed crystal
field values and temperature (d = 2, t = 2) in (a) and
(d = −1, t = 2.5) in (b).
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Fig. 9. The magnetizations mσ and mS as function of
the reduced temperature t for a fixed value of α = 0.5
and selected reduced crystal-field: (d = 0.5) (a), (d = 1)
(b), and (d = 3) (c).

tively. This is in accordance with the ground-state phase
diagram (Fig. 1) and with the results given by MFA cal-
culation.

5. Conclusions
We have investigated the effect of random crystal-field

on the magnetic properties of a mixed spin σ = 1
2 and

spin S = 3
2 Ising model on a square lattice, using the

mean field approximation (MFA). Our results revealed
many interesting phenomena, namely, several topologi-
cally different types of phase diagrams. This is due to
the appearance of a new ferrimagnetic phase, namely
(mσ = −1

2 ,mS = 1), in the studied system. Furthermore,
these phase diagrams present rich varieties of phase tran-
sitions with first and second order phase transition lines.
The first-order transition lines terminate at isolated crit-
ical points. On the other hand, the compensation phe-
nomenon appears in the system. This is due to the fact
that the ferrimagnetic mixed spin (σ = 1

2 , S = +1)
exhibits a compensation phenomenon as given in other
works. Also the effect of increasing the exchange interac-
tion parameter J , at very low temperature, when keeping
α constant, is investigated. The magnetization behaviors
as a function of the parameters α and d, are also studied.

References
[1] T. Kaneyoshi, Physica A 153, 556 (1988).
[2] T. Kaneyoshi, J. Magn. Magn. Mater. 92, 59 (1990).
[3] A. Benyoussef, A. El Kenz, T. Kaneyoshi, J. Magn.

Magn. Mater. 131, 173 (1994).
[4] A. Benyoussef, A. El Kenz, T. Kaneyoshi, J. Magn.

Magn. Mater. 131, 179 (1994).
[5] N. Benayad, A. Klumper, J. Zittartz, A. Benyoussef,

Z. Phys. B 77, 333 (1989).
[6] O.F. Abubrig, D. Horvath, A. Bobak, M. Jascur,

Physica A 296, 437 (2001).
[7] N. Benayad, J. Zittartz, Z. Phys. B 81, 107 (1990).
[8] J.W. Tucker, J. Magn. Magn. Mater. 237, 437

(2001).
[9] M. Drillon, E. Coronado, D. Beltran, R. Georges,

J. Chem. Phys. 79, 449 (1983).
[10] H. Tamaki, Z.J. Zhong, N. Matsumoto, S. Kida,

M. Korkawa, N. Archiwa, Y. Yashimoto, H. Okawa,
J. Ann. Chem. Soc. 114, 6974 (1992).

[11] H. Okawa, N. Matsumoto, H. Tamaki, S. Kida,
M. Ohba, Mol. Cryst. Liq. Cryst. 233, 257 (1993).

[12] C. Mathoniere, C.J. Nuttall, S.G. Carlin, P. Day, In-
org. Chem. 351, 201 (1996).

[13] E. Albayrak, Physica A 375, 174 (2007).
[14] J. Li, G. Wei, A. Du, Physica B 368, 121 (2005).
[15] T. Kaneyoshi, Phys. Rev. B 52, 7304 (1995).
[16] M. Jascur, Physica A 252, 217 (1998).
[17] A. Dakhama, Physica A 252, 225 (1998).
[18] J. Octmaa, W. Zheng, Physica A 328, 185 (2003).
[19] S. Yana, L. Liua, J. Magn. Magn. Mater. 312, 285

(2007).
[20] A. Bobak, M. Jascur, Phys. Rev. B 51, 11533 (1995).
[21] A. Bobak, F.O. Abubrig, Phys. Rev. B 68, 224405

(2003).
[22] L. Bahmad, A. Benyoussef, A. El Kenz, Phys. Rev. B

76, 094412 (2007).
[23] L. Bahmad, A. Benyoussef, A. El Kenz, Physica A

387, 825 (2008).
[24] N. Boccara, A. El Kenz, M. Saber, J. Phys. Condens.

Matter 1, 5721 (1989).
[25] A.P. Vieira, J.X. de Carvalho, S.R. Salinas, Phys.

Rev. B 63, 184415 (2001).
[26] A. Maritan, M. Cieplak, M.R. Swift, F. Toigo,

J.R. Banavar, Phys. Rev. Lett. 69, 221 (1992).
[27] C. Buzano, A. Maritan, A. Pelizzola, J. Phys. Con-

dens. Matter 6, 327 (1994).
[28] N.S. Branco, B.M. Boechat, Phys. Rev. B 56, 11673

(1997).
[29] N.N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).
[30] R.P. Feynmann, Phys. Rev. 97, 660 (1955).
[31] J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. New-

man, The Theory of Critical Phenomena, Clarendon
Press, Oxford 1992.

[32] D. Peno Lara, J.A. Plascak, Physica A 260, 443
(1998).

[33] G. Wei, Q. Zhang, Y. Gu, J. Magn. Magn. Mater.
301, 245 (2006).


