
Vol. 119 (2011) ACTA PHYSICA POLONICA A No. 6

Self-Ordered Front under Temporally Irregular Forcing:
Ratchet-Like Transport of the Quasi-Periodically Forced Front

R. Bakanasa,∗, F. Ivanauskasb,c and V. Jasaitisb

aSemiconductor Physics Institute, Center for Physical Sciences and Technology
A. Goštauto 11, LT-01108 Vilnius, Lithuania

bFaculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
cInstitute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania

(Received July 22, 2010)

Ratchet-like transport of the quasi-periodically forced “bistable” front joining two states of the different
stability in the reaction-diffusion system is considered by use of the piecewise linear rate (reaction) function of
the reaction kinetics. We approximate the oscillatory force acting on the front in the system by the bi-harmonic
forcing functions being a superposition of the single-harmonic components (the Fourier modes) of the different
frequencies, either commensurate or incommensurable ones. By considering the response of the self-ordered
front to the oscillatory forces used we analyze the effect of the temporally irregular oscillations of the ac forcing
on the ratchet-like shuttling of the ac driven front. By comparing the average characteristics of the spurious
drift derivable in both cases of the periodically and quasi-periodically forced fronts we show that the temporally
irregular fluctuations of the oscillatory force shrink the spurious drift of the front. More specifically, we find
the performance of the ratchet-like shuttling of the self-ordered fronts is much lesser pronounced with the
quasi-periodic, temporally irregular ac forcing if compared to that derivable by the rigorously periodic forcing,
in both cases of the symmetrical and asymmetrical rate functions satisfying the different symmetry. The average
characteristics of the spurious drift, that describe the dependence of the mean drift velocity of the ac driven front
versus both the amplitude (strength) and the frequency of the oscillatory forces used are presented.

PACS: 05.45.−a, 02.30.Jr, 82.40.Ck

1. Introduction

Spatio-temporal control of both the point-particles
(electrons, atoms, molecules) and self-ordered fronts
without any net external force, under the generic name of
“ratchet-like transport”, has today become a fundamen-
tal field of multidisciplinary research in a wide variety
of the systems ranging from biology to physics (e.g., see
Refs. [1] and [2–9], respectively, and references therein).
The ratchet-like transport implies that the oscillatory
force of zero-time average, either noisy or regular one,
is converted into the directed net motion of the particle/
self-ordered front. The ordinary ratchets performing the
unforced shuttling of the point particles operate in the
systems lacking the spatial inversion (reflection) symme-
try. An intriguing feature of the systems performing the
ratchet-like transport of the self-ordered fronts, both co-
herent and dissipative ones, is their capability to operate
even in the case of the spatially uniform system satisfying
a continuous symmetry with respect to the infinitesimal
translations of the spatial coordinate. Importantly, the
presence of dissipation, which leads to the temporal irre-
versibility of the dynamical equations, is a crucial factor
for the existence of the unforced dc motion of the self-
-ordered fronts. The dissipation effaces the memory of
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the system when the system evolves in time, i.e., the
memory of the initial conditions of the ac driven front
gets lost as the development of the system progresses.

In the present report we deal with the dissipative
fronts, namely, the unforced dc motion of the “bistable”
fronts (BFs) joining two states of the different stability,
the stable and metastable one, in a bistable system of
the reaction-diffusion type is considered. The ratchet-
-like transport of the dissipative fronts that result from
the competition between the nonlinearity and diffusion
in the essentially dissipative systems of the reaction-
-diffusion type has been studied in numerous papers, in
both cases of the noisy (randomly fluctuating) and de-
terministic (periodically oscillating) zero-mean ac forces
(e.g., see Refs. [3–8] and [9–12], respectively). Two differ-
ent mechanisms underlying the spurious drift discussed
have been identified, namely, the parametrically stimu-
lated and directly induced dc drift of the fronts (see Refs.
[3–5] and [6–12], respectively). The parametrically stim-
ulated dc drift, more exactly, the ratchet-like transport
derivable by the multiplicative forcing function in the
governing equation of the ac driven front comes through
the action of the external oscillatory field of zero-time
average on the externally controllable parameter of the
system: the external time-symmetric field acting on the
system is converted (transformed) into the asymmetri-
cally oscillating force of a finite time average, acting on
the front in the system, as a result, the “unforced” uni-
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directional net motion of the ac driven front takes place.
By contrast, the directly induced dc drift, namely, the
ratchet-like transport derivable by the additive forcing
f(t) implies that the average force acting on the front in
the system equals zero. The governing equation of the
directly driven BF reads

ut − uzz − c(t)uz + R(u) = f(t) , (1.1)

where the function u(z, t) denotes the step-like field of
the front propagating at the instantaneous velocity c(t),
and the notation z = x − χ(t) stands for the traveling
(comoving) coordinate, where χ(t) =

∫ t

t0
dt′ c(t′), with t0

denoting the time moment, at which both the traveling
coordinate and that being at rest, z and x, respectively,
coincide. The rate function R(u), which characterizes
the rate of the transient processes in the system, has
three zeroes at u = u1, u2, u3 (say u1 < u2 < u3), more
specifically, the following relations hold: R′(u1,3) > 0
and R′(u2) < 0 where the prime denotes the derivative.
The outer zero-points of the rate function, u1 and u3,
describe two steady spatially uniform states of the sys-
tem, the stable and metastable one, and the inner u2

stands for unstable one. Without loss of generality, we
shall take in what follows that u0(z→ −∞)→u1, and
u0(z→∞)→u3.

The ratchet-like transport of BF implies that the os-
cillatory speed function c(t) of the ac driven front is split
into two parts: (a) an oscillatory part of zero time aver-
age, and (b) a systematic part denoting the mean drift
velocity of the ac driven front, i.e., the “speed rectifica-
tion” of the ac driven BF takes place. Broadly speaking,
the “speed rectification” is a nonlinear transformation
process, which converts the oscillatory “input” function
f(t) of zero-time average into the “output” (response)
function c(t) of a finite time average. The mechanism
of the speed rectification discussed, more exactly, the
general principle of how the oscillatory force of zero-
-time average is converted into the speed function of a
finite time average was discussed in Ref. [12]. Symme-
try analysis that was performed with the rate function of
the general form in the governing equation of the slowly
(quasi-stationary) driven BF demonstrated that the ac
driven front experienced the speed rectification discussed
if the rate function was asymmetrically shaped with re-
spect to the inner zero-point, namely, when the inequality
R(u−u2) 6= −R(u2−u) was satisfied. Evidently, the per-
formance of the ratchet-like shuttling discussed should be
sensitive to the peculiarities of f–t dependence (e.g., see
Refs. [11–14]). In particular, it depends on the temporal
symmetry of the ac force acting on the front in the sys-
tem; the average v–fa characteristics, which describe the
dependence of the mean drift velocity v of the ac driven
BF versus the amplitude fa of the oscillatory force f(t),
derivable in two different cases of the time-symmetric
and time-asymmetric forcing functions satisfying the dif-
ferent temporal symmetry radically differ, as shown in
Refs. [9–11] (see also Refs. [14], for related studies).

In the present report the ratchet-like transport of
the quasi-periodically forced BFs that are influenced by
the temporally irregular ac force being characterized by
the incommensurate “frequency mixing” of the single-
-harmonic components (the Fourier modes) is considered.
Namely, we approximate the oscillatory force f(t) act-
ing on the front in the system by the bi-harmonic forc-
ing function being a linear combination (sum) of the
single-harmonic components with the incommensurate,
rationally independent frequencies. The multi-harmonic
oscillatory forces f(t) that are characterized by the in-
commensurate “frequency mixing” of the single-harmonic
components exhibit the temporally irregular behavior.
Namely, the “amplitude” (strength) of the quasi-periodic
forcing f(t), more specifically, the deviation of the oscil-
latory function f(t) between two points being separated
by the time interval ∆t irregularly oscillates with ∆t. We
notice that the quasi-periodic forcing functions of zero-
-time average have been used in the studies of the ordi-
nary ratchets, as simplified approximations (emulations)
of the noisy, randomly fluctuating forces (see Refs. [15]).

A random force may be presented by a superposition
of the single-harmonic modes being characterized by the
randomly distributed frequencies, both the commensu-
rate and incommensurate ones. In particular, the Gaus-
sian random function of zero mean and delta correlated
is characterized by the compact and infinitely broad fre-
quency spectrum (e.g., see Refs. [16]). It should be noted
that the unforced dc drift of the randomly “wandering”
BFs that are influenced by the noisy, temporally irregular
ac forces representing both cases of the “white” (uncor-
related) and colored (correlated) noises has been studied
in Refs. [5–7]. More specifically, the direct calculations
being performed within both the cubic polynomial and
sine-Gordon models of the system, by use of the pertur-
bation techniques demonstrated that a white Gaussian
noise was not capable to induce the directed net motion
of BF; the spurious drift of the randomly wandering BF
disappeared in both cases of the symmetrical (symmetri-
cally shaped) and asymmetrical (asymmetrically shaped)
the rate functions satisfying the different R–u symmetry
(see below), if the random force f(t) was Gaussian and
delta correlated. Both the colored noise and the broken
R–u symmetry of the rate function with respect to the
inner zero-point u2 are both crucial factors for the exis-
tence of the directed net motion of the randomly wan-
dering BF, as shown in Ref. [6]. It should be noted that
the noise-supported propagation of the self-ordered fronts
propagating into metastable state of the bistable system
was observed experimentally in the system of the coupled
electronic elements (nonlinear resonators) (see Ref. [17]).

Obviously, the results derivable within the perturba-
tion theory are of limited utility; they fit well in the case
of the weak forcing only. The noise-assisted propagation
of BFs in the random fields of the higher intensities, more
specifically, the ratchet-like transport of BFs, derivable
at the higher levels of the noise has not been studied so
far. Thus, it is not clear whether the previous results
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being derived within the perturbation theory will hold at
the higher levels of the noise, beyond the perturbative
approaches discussed. Clearly, the quasi-periodic forc-
ing, which may be treated as the deterministic “equiv-
alent” (emulation) of the random force, is very drastic
simplification of the noisy driver. Nevertheless, it pro-
vides us with a possibility to learn whether or not, and
how strongly the temporally irregular oscillations of the
ac force acting on the front in the system are capable
support the propagation of BFs. In addition, the em-
ployment of the quasi-periodic forcing is meaningful for
its simplicity. The “efficiency”, the quasi-periodic driver,
in terms the spurious drift discussed, is the principal goal
of the present study. By comparing the average charac-
teristics of the spurious drift derivable in both cases of the
periodically and quasi-periodically forced BFs we inves-
tigate whether the temporally irregular ac driver results
in a lower, or inversely, in a higher performance of the
ratchet-like shuttling of BFs, if compared to that deriv-
able by the rigorously periodic driver. As already noted,
the spurious drift of BFs is sensitive to the symmetry of
the rate function. In view of this, we shall deal the piece-
wise linear rate function of the flexible R–u symmetry,
encompassing both cases of the symmetrical and asym-
metrical rate functions. The ratchet-like transport of the
quasi-periodically forced BFs, as far as we know, has not
been studied so far.

The paper is organized as follows. In Sect. 2 we discuss
the model and the techniques used. Section 3 deals with
the ratchet-like shuttling of the quasi-periodically forced
BFs. The spurious drift of BFs is sensitive to the “rate”
(frequency) of the oscillatory force acting on the front in
the system. In view of this, in considering the ratchet-like
transport of BFs we distinguish between two regimes of
the slow and fast oscillatory forces. The particular case
of the slow driving forces that induce almost immediate,
nearly instantaneous response of BF to the applied forc-
ing, is studied in Sect. 3.1, and the other case of the fast
driving, namely, the rectified oscillatory motion of the
self-ordered fronts with a delayed response of BF to the
applied forcing is studied in Sect. 3.2. Finally, in Sect. 4
we summarize the main results.

2. Model and techniques used
2.1. Model

We approximate the rate function by the piecewise lin-
ear dependence

R(u) =





α1(u− u1), u < uM,

−α2(u− u2), uM < u < um,

α3(u− u3), u > um,

(2.1)

where the free, adjustable parameters ui and αi sat-
isfy the relations u1 < uM < u2 < um < u3 and
αi > 0 (i = 1, 2, 3). The extremes of the rate function,
RM ≡ R(uM) and Rm ≡ R(um), are given by the relation
RM,m = α2(u2 − uM,m) where the subscripts M and m
denote “Maximal” and “minimal”, respectively. In what
follows we shall deal with the self-similar rate functions

being defined by the relation

R(u; C) := R0(u) + C, (2.2)

where C is the free constant and the subscript zero
refers to the balanced rate function R0(u) satisfy-
ing Maxwellian construction. The Maxwellian con-
struction is balanced (satisfied) if the equality S0 ≡∫ u3

u1
du R0(u) = 0 holds where the notation S0 stands

for the total area subtracted by R0–u dependence within
the interval [u1, u3] of the variable u. For our pur-
poses it is useful to introduce the “balance parameter”
hR of the rate function being defined by the relation
hR := −RM/Rm ≡ −(R0M + C)/(R0m + C) where by
R0M and R0m we denote the extremes of the balanced
rate function. By tuning the balance parameter hR

one governs Maxwellian construction of the rate function
R(u;C), as a consequence, one arrives at the different
propagation rates c0 of the free, unperturbed (f(t) ≡ 0)
BF. The free BF is static (c0 = 0) if the rate function is
balanced, namely, if one takes that hR = h0, where

h0 =
√

(1 + r−1
3 )/(1 + r−1

1 ) , (2.3)

and the quantity, r1,3 = α1,3/α2, denotes the slope pa-
rameter of the rate function. The free BF is running
(c0 6= 0) if the rate function is unbalanced, namely, if one
takes that hR 6= h0.

As previously mentioned, the symmetry of the rate
function plays a prominent role, in considering the
ratchet-like shuttling of BFs (see Refs. [10, 12]). Two
different families of the symmetrical and asymmetrical
rate functions R(u; C) may be typified. The rate func-
tion R(u;C) is symmetrical (symmetrically shaped) if the
basic (balanced) rate function R0(u) is rigorously sym-
metric, namely, if the equality holds,

R0(u− u2) = −R0(u + u2) . (2.4a)

By contrast, the asymmetrical rate function R(u; C) im-
plies that

R0(u− u2) 6= −R0(u + u2) . (2.4b)

The piecewise linear rate function (2.1) is of the flexible
R–u symmetry: by taking α1 = α3 and α1 6= α3 one
arrives at both cases of the symmetrical and asymmetri-
cal rate functions R(u; C), respectively. Both the heights
of the self-similar rate functions, ∆R = RM(uM; C) −
Rm(um; C), and the positions of the extremes being lo-
cated at u = uM and u = um do not depend on the
free constant C. From Eq. (2.1), in the conjunction with
(2.2), it follows that:

RM = hR(1 + hR)−1∆R ,

Rm = −(1 + hR)−1∆R , (2.5a)

u1 = uM − α−1
1 RM , u2 = uM − α−1

2 RM ,

u3 = um − α−1
3 Rm . (2.5b)

As discussed, by tuning the balance parameter hR of the
rate function R(u; C) one arrives at the different prop-
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agation rates of the free BF. The maximal propagation
rate of the forward (c0 > 0) and the backward (c0 < 0)
running BF is achieved by taking the limits hR→∞ and
hR→ 0, respectively. More specifically, one has that (a)
c0→ cM if hR→∞, and (b) c0→ − cM if hR→ 0 where
the notation cM stands for the marginal velocity of BF,
namely, one has that cM = 2

√
α2. In closing the discus-

sion of the rate functions used we notice that the free
front-solutions of BFs, u0(z), derivable by the piecewise
linear rate function (2.1) are presented in Ref. [18]. Let
us turn to the forcing functions.

2.2. Forcing functions

In what follows we shall deal with the biharmonic forc-
ing functions described by the following expression:

f(t) = f0(1 + bF)−1 [sinωt + bF sin(µωt + ∆ϕ)] (2.6)

where by bF, µ, ∆ϕ, and f0 we denote the free, adjustable
parameters. The presented expression encompasses both
cases of the periodic and quasi-periodic forcing functions
below labeled by fP (t) and fQ(t), respectively. By tak-
ing the free parameter µ to be the rational/irrational
number one arrives at the periodic/quasi-periodic forc-
ing function. The “efficiency” of the temporally irregular
ac driver is the central subject of the present study. Ob-
viously, in order to evaluate the effect of the temporally
irregular oscillations of the quasi-periodic forcing on the
performance of the ratchet-like shuttling of BFs, the char-
acteristic parameters of both oscillatory functions fQ(t)
and fP (t) must be properly chosen. Namely, the frequen-
cies and the amplitude-to-frequency ratios of the single-
-harmonic components of both forcing functions fQ(t)
and fP (t) should be close to each other. We shall de-
mand in what follows that bF = 1 and ∆ϕ = π, and the
parameter value µ being related to the forcing functions
discussed, fQ(t) and fP (t), is taken as follows: µ =

√
3

and µ = 2, respectively. Thus, both the “spectral con-
tent” and the amplitude-to-frequency ratios of the single-
-harmonic components of both forcing functions used are
close to each other. The amplitude (maximal deviation)

Fig. 1. The periodic (fP ) and quasi-periodic (fQ) forc-
ing functions. The period of the basic mode of both
oscillatory functions was taken as follows: T = 100.

fa of the oscillatory force f(t) is another important pa-
rameter of the ac driver. Referring to the forcing func-
tions fQ(t) and fP (t) we get, respectively, that

fa = f0 , (2.7a)

and

fa =
f0

64

(
30 + 2

√
33

)1/2 (
3 +

√
33

)
≈ 0.88f0 . (2.7b)

Clearly, the amplitude fa of the oscillatory force act-
ing on the front cannot exceed the critical value, fMx ≡
min{RM,−Rm}, above which the global stability of the
ac driven BF breaks down. Thus, we shall demand in
what follows that fa < fMx. Both forcing functions fQ(t)
and fP (t) are depicted in Fig. 1, for comparison. Let us
touch briefly on the techniques used.

2.3. Approximations and techniques used

In what follows we shall deal with the scaled speed
functions s(t) and the scaled forcing functions f∗(t) be-
ing defined by the relations, s(t) := c(t)/cM and f∗(t) :=
f(t)/∆R, respectively. The scaled functions are prefer-
able over the ordinary ones; the average characteristics
of the spurious drift of BFs are not sensitive to the height
∆R of the self-similar rate functions R(u;C) if the scaled
functions discussed are used, as shown in Refs. [10, 12].
To simplify the denotations, we shall drop the asterisk
in the denotation f∗(t), namely, in what follows by f(t)
we shall denote the scaled forcing function. Let us turn
to the techniques used. The governing Eq. (1.1) is ana-
lytically not solvable. In view of this, we used both the
numerical simulations and analytic tools. Namely, the
particular case of the quasi-stationary (quasi-statically
slowly) driven BFs that instantly follow the ac force,
without any time delay, was studied by use of the quasi-
-stationary equation

uzz + cMsA(t)uz −RF(u) = 0 ,

RF(u) = R(u)− f(t) , (2.8)

where the notation sA(t) stands for the “instantaneous”
speed function. The presented equation (the adiabatic
approximation of the governing Eq. (1.1)) fits well for
the low driving “rates”, when the period T of the ac force
acting on the front significantly exceeds the characteris-
tic relaxation time of the system, τR = max{α−1

1 , α−1
3 }

(see Ref. [19]). The instantaneous speed function sA(t) is
derivable analytically, by use of the “speed equation” be-
ing derived by the direct solution of the quasi-stationary
Eq. (2.8) (see Refs. [10, 18]). The speed equation reads

ΨSn[sA(t)]
exp (−ϕ[sA(t)]) sinΦ(sA(t))

=
hR − (1 + hR)f(t)
1 + (1 + hR)f(t)

,

(2.9)
where the auxiliary quantities ΨSn(sA), ϕ(sA) and Φ(sA)
are functions of both the slope coefficients {αi } and the
speed function sA(t) which we seek. Regretfully, the
explicit expressions of the auxiliary functions ΨSn(sA),
ϕ(sA) and Φ(sA) are rather involved; the auxiliary func-
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tions are transcendental. They are presented in Ap-
pendix. In considering the ratchet-like shuttling of BFs
under the slow, quasi-stationary zero-mean ac forces
fQ(t) and fP (t) we used the speed Eq. (2.9).

The other case of the fast driving, more specifically,
the front dynamics with the delayed response of BF to
the applied forcing was studied numerically, by the di-
rect solution of the governing Eq. (1.1). To find both
the front-solution u(z, t) and the speed function s(t) of
the ac driven BF we numerically simulated the drift
motion of the ac driven front. Equation (1.1) was ap-
proximated by the finite difference scheme in the co-
-moving coordinates, z = x − xC(t), with the travel-
ing center of the ac driven front, xC(t), being defined
by the relation xC(t) = ∆u−1(t)

∫∞
−∞ dxxux(x, t), where

∆u(t) =
∫∞
−∞ dxux(x, t). The actual (retarded) speed

functions s(t) that follow behind the ac force with some
retardation have been obtained by considering the trav-
eling center xC(t) of the front.

3. Self-ordered front under temporally
irregular ac forcing: ratchet-like transport

of the quasi-periodically forced fronts

3.1. Low-frequency response: self-ordered front
under slow oscillatory force

We begin our discussion of the ratchet-like shuttling
of the quasi-periodically forced BFs with the particu-
lar case of the slow oscillatory forces satisfying the re-
lation µωτR ¿ 1. The propagation velocity s(t) of the
ac driven BF almost instantly follows the ac force if the
frequency of the fastest (super-harmonic) mode of the
multi-harmonic forcing function is much lesser if com-
pared to the characteristic relaxation rate of the system,
τ−1
R (e.g., see Refs. [19, 20]). Furthermore, the slow oscil-
latory force usually maximizes the spurious drift of BF.
In particular, the periodic and extremely slow (quasi-
-stationary) ac force of zero-time average is of the high-
est “efficiency” in terms of the spurious drift discussed,
namely, it always induces the maximal shift of the mean
drift velocity of the ac driven BF, as shown in Ref. [20]
(for related experimental studies, see Ref. [13]). Never-
theless, the temporal behavior of both forcing functions
used, the periodic and quasi-periodic one, radically dif-
fers. As previously noted, the spurious drift of BFs is very
sensitive to the peculiarities of f–t dependence; thus, it is
not clear a priori, in advance whether and how strongly
the temporally irregular ac forcing fQ(t) is capable to
support the propagation of BF.

As discussed, the “efficiency” of the quasi-periodic,
temporally irregular ac driver, in terms of the spuri-
ous drift discussed, is the central subject of the present
study. The “efficiency” of the oscillatory force of zero-
-time average may be evaluated by considering the ac-
celeration factor, ρ := |s0|−1v, which denotes the rela-
tive increase of the mean drift velocity of the ac driven
of BF. The average ρ–fa characteristics of the periodi-
cally and quasi-periodically forced BFs that are derived

by use of both the symmetrical and asymmetrical rate
functions are presented in Figs. 2 and 3, respectively.
The curves labeled by P and Q refer to the periodically
and quasi-periodically forced BFs, respectively. The ac-
tual, numerically found ρ–fa dependences being derived
by the governing Eq. (1.1) are shown by the solid curves,
and the limiting case of the quasi-stationary driven BFs,
namely, the average characteristics derivable by the speed
Eq. (2.9) are shown by the dashed curves. The presented
ρ–fa dependences evidently demonstrate that the perfor-
mance of the ratchet-like shuttling of BFs is much lesser
pronounced with the quasi-periodic, temporally irregular
ac forcing. One can see that the average ρ–fa character-
istics of the quasi-periodically driven BFs are more gently
sloped if compared to those being derived by the rigor-
ously periodic forcing fP (t), in the whole interval of the
driving amplitudes fa, in both cases the symmetrical and
asymmetrical rate functions (compare the curves labeled
by P and Q in both figures).

Fig. 2. The acceleration factor ρ of the ac driven front
versus the amplitude fa of the ac force. The curves
labeled by P and Q refer to the periodic and quasi-
-periodic forcing functions, respectively. The actual
ρ–fa dependences that are derived by the governing
Eq. (1) are shown by the solid curves; the period of
the basic mode of both oscillatory forces was taken as
follows, T = 100τR. The dashed curves show the av-
erage ρ–fa characteristics being derived by the speed
Eq. (2.8). The parameters of the symmetrical rate func-
tion used are as follows: α1 = α3 = 1.0, α2 = 5.0, and
hR = 1.05. The rest of the parameters are: s0 ≈ 0.009
and τR = 1. The maximal acceleration factors ρP (fMx)
and ρQ(fMx) being related to the separate curves P
and Q are as follows: 2.5 and 1.7, respectively.

For instance, the maximal acceleration factors being
related to the separate curves labeled by P and Q in
Fig. 2 are as follows, ρP (fMx) ≈ 2.5 and ρQ(fMx) ≈
1.7 where the denotation, ρP,Q(fMx) ≡ ρP,Q(fa = fMx),
stands for the acceleration factor taken at the maximal
amplitude of the ac forcing, fa = fMx.

Furthermore, the average ρ–fa characteristics deriv-
able by the asymmetrical rate functions of the low R–u
symmetry demonstrate that both the periodically and
quasi-periodically forced BFs can exhibit quite different,
dissimilar behavior (see Fig. 3). Indeed, one can see that
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Fig. 3. The same as in Fig. 2 but for the other case
of the asymmetrical rate function. The period of the
basic mode of the oscillatory forces was taken as follows:
T = 100τR. The curves labeled by Pi and Qi refer
to the periodically and quasi-periodically forced BFs,
respectively. The “critical” driving amplitudes fa = fRP

and fa = fRQ, at which the reversals of the directed net
motion of the periodically and quasi-periodically driven
BFs occur, are pointed by the arrows. Parameter values
are as follows: α1 = 5.0, α2 = 3.0, α3 = 1.0, h0 ≈
1.58 and τR = 1.0; (curves (1)) hR ≈ 1.74, s0 ≈ 0.024;
(curves (2)) hR ≈ 1.44, s0 ≈ −0.024; (curves (3)) hR ≈
0.55, s0 ≈ −0.261.

the presented ρ–fa dependences of the quasi-periodically
driven BFs are more flattened if compared to those deriv-
able with the rigorously periodic forcing fP (t). Thus,
the higher strength of the oscillatory force is required to
achieve the reversal of the directed net motion of the ac
driven BF, with the quasi-periodic, temporally irregular
forcing fQ(t) (see curves P2 and Q2 in Fig. 3). The re-
versals of the directed net motion of the ac driven BFs
are related to the null-points of ρ–fa characteristics (the
null-points, more specifically, the “critical” amplitudes,
fa = fRP , fRQ, at which the reversals discussed take
place are pointed by arrows in the figure; as before, the
labels P and Q in the denotations fRP and fRQ refer
to the periodic and quasi-periodic forcing functions, re-
spectively). One can see that both the periodically and
quasi-periodically forced BFs will exhibit quite different,
dissimilar behavior if the amplitude fa of the oscillatory
forces used is taken within the interval [fRP , fRQ]: the
initial (free) BF, which propagates at the some fixed
nonzero velocity s0, will propagate, on average, in two
opposite directions, depending on the particular ac forc-
ing, either periodic or quasi-periodic one, that was sub-
jected to the front in the system. It should be noted
that the average ρ–fa characteristics that are related to
the “backward” running (s0 < 0) fronts (see curves P3

and Q3 in Fig. 3) are very flattened: the spurious drift
of BF practically disappeared in both cases of the peri-
odic and quasi-periodic ac forces, in the whole interval of
the driving amplitudes fa. This is in line with the pre-
vious findings (see Ref. [10], in particular, Fig. 3 of this
reference).

Finally, in closing the discussion of the spurious drift
of BFs under slow oscillatory forces we notice that a close

proximity of both the actual, numerically found ρ–fa de-
pendences and those derivable analytically, by use of the
speed Eq. (2.9) occurred in both cases of the symmetri-
cal and asymmetrical rate functions. Both ρ–fa depen-
dences discussed practically coincided if the frequency
of the fastest (super-harmonic) mode of the oscillatory
forces used was much lesser if compared to the charac-
teristic relaxation rate of the system, namely, when the
criterion of the slow driving, µωτR ¿ 1, was satisfied.
A close proximity discussed is demonstrated by the solid
and dashed curves in Fig. 2; the actual, numerically found
ρ–fa dependences are shown by the solid curves, and
those being derived by the speed Eq. (2.9) are presented
by the dashed curves. One can see that both the nu-
merically found ρ–fa characteristics and those derivable
analytically, within the adiabatic (quasi-stationary) ap-
proximation discussed practically coincide, in both cases
of the periodically and quasi-periodically forced BFs. No-
tice that the oscillatory forces that have been used in the
numerical derivation of the discussed dependences were
taken slow enough, namely, the criterion of the slow driv-
ing, µωτR ¿ 1, was satisfied (see the figure caption).

Summarizing, we conclude that the temporally irregu-
lar oscillations of the unbiased oscillatory forcing shrink
the spurious drift of BF: the performance of ratchet-
-like shuttling of BFs is much lesser pronounced with
the quasi-periodic, temporally irregular ac forcing if com-
pared to that derivable by the rigorously periodic ac
force. Let us turn to the ratchet-like shuttling of the
quasi-periodically forced BFs being under the action of
the fast, rapidly oscillating forces.

3.2. High-frequency response: self-ordered front
under rapidly oscillating force

In the previous section we have shown that the slow
oscillatory forces, the periodic and quasi-periodic one,
contribute quite differently to the spurious drift of BFs.
As mentioned, the slow oscillatory force usually maxi-
mizes the spurious drift of BF. The situation is quite
different at the higher driving frequencies ω, beyond the
low-frequency interval discussed. The average ρ–ω char-
acteristics that describe the dependence of the accelera-
tion factor versus the frequency ω of the basic mode of
the oscillatory forces used are presented in Figs. 4 and 5.

The average characteristics that are derived by use of
the symmetrical rate function are shown in Fig. 4 and
the other case of the asymmetrical rate function is pre-
sented in Fig. 5. The solid curves (labeled by Q) show
the ρ–ω dependences being derived by the quasi-periodic
forcing and the other case of the periodically forced BFs
is presented by the dashed curves (labeled by P ) in both
figures. One can see that the presented ρ–ω dependences
derivable by both oscillatory forces are similarly shaped:
the acceleration factor progressively decreases with the
increasing frequency ω, in both cases of the symmetrical
and asymmetrical rate functions. Nevertheless, the “effi-
ciency” of both drivers, more specifically, the acceleration
factors ρ derivable by both oscillatory forces, the peri-
odic and quasi-periodic one, notably differ. Namely, they
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Fig. 4. The acceleration factors of both the periodi-
cally and quasi-periodically driven BFs versus the fre-
quency of the fundamental mode of the forcing func-
tions fP (t) and fQ(t) (shown by the dashed (P ) and
the solid (Q) curves, respectively). The characteristic
parameters of the symmetrical rate function are as fol-
lows: α1 = α3 = 1.0, α2 = 5.0, and hR ≈ 1.05. The rest
of the parameters are: s0 ≈ 0.009, fa = 0.9fMx, and
τR = 1.0.

Fig. 5. The same as in Fig. 4 but for the other case
of the asymmetrical rate function. The frequency of
the ac force, ω = ωR ≈ 0.23, at which the reversal of
the directed net motion of the periodically driven BF
takes place is pointed by the arrow. Parameter values
of the rate function are as follows: α1 = 5.0, α2 =
3.0, α3 = 1.0, h0 ≈ 1.58, and hR ≈ 1.44. The rest
of the parameters are: s0 ≈ −0.024, fa = 0.9fMx, and
τR = 1.0.

deviate more significantly from each other in the low-
-frequency range, ω < (µτR)−1, only: the performance of
the ratchet-like shuttling of BF is much more pronounced
with the periodic forcing, in both cases of the symmet-
rical and asymmetrical rate functions (compare the solid
and dashed curves in both Figs. 4 and 5).

By contrast, at the higher frequencies ω, beyond the
low-frequency interval discussed, the acceleration factors
ρ drivable by both oscillatory forces are close to each
other, they practically coincide. Such a dissimilar behav-
ior of both the periodically and quasi-periodically forced
BFs within two different frequency intervals discussed
may be attributed to the retardation effects in the front
dynamics. A close proximity of the discussed ρ–ω de-

pendences in the frequency domain ω > (µτR)−1 demon-
strates that the fastest (super-harmonic) mode of both
forcing functions fP (t) and fQ(t) is “passive”, in terms of
the spurious drift discussed, more specifically, the con-
tribution of the super-harmonic mode of both oscillatory
forcing functions to the spurious drift of BF is insignif-
icant if the frequency of the super-harmonic mode, µω,
exceeds the characteristic relaxation rate of the system,
namely, when the relation µω ≥ τ−1

R is satisfied (for re-
lated studies see Refs. [19, 20]). We remind that both the
“spectral content” and the amplitude-to-frequency ratios
of the single-harmonic components of both forcing func-
tions used, fP (t) and fQ(t), are very close to each other,
they practically coincide.

Let us touch briefly on the reversal behaviour of the
directed net motion of the quasi-periodically forced BFs
derivable by the asymmetrical rate functions. The mean
drift velocity of the ac driven BF is controllable by adjust-
ing both the amplitude and the frequency of the ac forc-
ing, thus, the occurrence/vanishing of the reversals dis-
cussed should be sensitive to both parameters discussed,
the frequency and the amplitude of the oscillatory force.
Regretfully, the rigorous criteria for the existence (oc-
currence/vanishing) of the reversals are lacking; the ap-
proximate criteria, more specifically, the necessary, but
insufficient conditions for the existence of the reversals
discussed have been presented in Ref. [10]. Generally
speaking, the reversal implies that the average charac-
teristic of the ac driven BF, either ρ–fa or ρ–ω, has at
least one null (zero-point).

As discussed, the average characteristics of the spuri-
ous drift of both the periodically and quasi-periodically
forced BFs deviate more significantly from each other in
the low-frequency range satisfying the relation µω < τ−1

R ,
in both cases of the symmetrical and asymmetrical rate
functions (see Figs. 4, 5 and 6). The average ρ–fa and
ρ–ω characteristics derivable by both the periodic and
quasi-periodic ac forces become very close to each other,
i.e., the peculiarities of the ratchet-like transport deriv-
able by both oscillatory forces discussed will practically
coincide if the fastest (super-harmonic) mode of the oscil-
latory forces becomes “passive”, in terms of the spurious
drift discussed, namely, when the relation µω À τ−1

R is
satisfied.

The typical ρ–ω and ρ–fa dependences being derived
by use of the asymmetrical rate functions are presented
in Figs. 5 and 6, respectively. They evidently demon-
strate that a dissimilar behavior of both the periodically
and quasi-periodically forced BFs is observed in the low-
-frequency domain discussed, only.

In particular, the average ρ–ω characteristics shown
in Fig. 5 demonstrate that the reversal of the unforced
dc motion of BF takes place with the periodic ac force
only; the progressively decreasing (decelerated) dc drift
of the quasi-periodically driven BF is observed with the
increasing frequency ω.

A dissimilar behavior of both the periodically and
quasi-periodically forced BFs is observed in the low-
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Fig. 6. The acceleration factor of the ac driven front
versus the amplitude of the oscillatory force. The av-
erage ρ–fa characteristics of the periodically and quasi-
-periodically forced BFs are presented by the dashed
(Pj) and the solid (Qj) curves, respectively. The pa-
rameters of the asymmetrical rate function are as fol-
lows: α1 = 5.0, α2 = 3.0, α3 = 1.0, h0 ≈ 1.58, and
hR ≈ 1.44. The rest of the parameters are: s0 ≈ 0.009,
and τR = 1. The frequencies ω of the oscillatory forces
being related to the separate pairs of the curves labeled
by (P0, Q0), (P1, Q1), (P2, Q2), and (P3, Q3) are as fol-
lows: ωτR = 0.01, 0.30, 0.70, and 1.00, respectively. No-
tice that the average ρ–fa characteristics being derived
by both the periodic and quasi-periodic forcing func-
tions that satisfy the relation µωτR ≥ 1 are very close
to each other (compare the interrelated curves labeled
by (P2, Q2) and (P3, Q3), respectively).

-frequency domain, ω < (µτR)−1, by tuning the oscilla-
tory frequency ω: the free BF, which initially propagates
at the same fixed velocity s0, will propagate, on average,
in two opposite directions if the frequency of the oscil-
latory force, either periodic or quasi-periodic one, being
subjected to the front in the system satisfies the relation
ω < ωR (the null-point of the average ρ–ω characteris-
tic, more specifically, the “critical” frequency, ω = ωR,
at which the reversal of the periodically forced BF takes
place is pointed by arrow in Fig. 5). As already noted,
such a contrasting, dissimilar behavior of both the pe-
riodically and quasi-periodically forced BFs within two
different intervals of the frequency ω may be attributed
to the retardation effects in the front dynamics.

The average ρ–fa characteristics being derived at the
different frequencies ω of the oscillatory forces used con-
firm this prediction; these are shown in Fig. 6. One can
see that the presented ρ–fa dependences are decreasingly
sloped with the frequency ω of the oscillatory force be-
ing increased (compare the curves labeled by (P0, Q0),
(P1, Q1), (P2, Q2), and (P3, Q3) in Fig. 6). This in line
with the previous findings (see Refs. [19, 20]): the re-
tardation effects in the front dynamics shrink the spuri-
ous drift of BFs. More specifically, the lag time between
the ac force f(t) and the speed function s(t) of the ac
driven BF increases with the increasing frequency of the
ac forcing, as a consequence, the average ρ–fa character-
istics of the spurious drift of BFs become more and more
flattened with the oscillatory frequency of the ac force

being increased. Indeed, the average ρ–fa characteristics
being derived with the slow oscillatory forces satisfying
the relation ω < τ−1

R are more steeply sloped (see curves
(P0, Q0) and (P1, Q1) in Fig. 6): the reversal behavior
of the ac driven BFs is observed in the case of the slow
oscillatory forces only, when the retardation effects in
the front dynamics are insignificant (the reversal-points,
i.e., the “critical” amplitudes fPR and fQR, at which the
reversals of both the periodically and quasi-periodically
driven BFs take place are pointed by arrows in the fig-
ure).

In particular, the average ρ–fa characteristics shown
by curves P0 and Q0 demonstrate that quite differ-
ent, dissimilar behavior of both periodically and quasi-
-periodically forced BFs is observed in the low frequency
domain discussed, in accord with the previous findings
(see Figs. 3 and 5). Namely, they show that both the peri-
odically and quasi-periodically forced BFs will propagate,
on average, in the opposite directions if the amplitude fa

of the oscillatory forces, the periodic and quasi-periodic
one, was taken within the interval [fPR, fQR].

In closing the discussion of the spurious drift of the
rapidly driven BFs we stress that the effect of the tem-
porally irregular oscillations of the oscillatory force on
the ratchet-like transport of BFs is significant in the
low-frequency domain only, when the frequency of the
super-harmonic mode, being responsible for the tempo-
ral behavior of the oscillatory function, either periodic
or quasi-periodic one, is much lesser if compared to the
characteristic relaxation rate of the system. At the higher
frequencies, when the fastest (super-harmonic) modes of
the oscillatory forcing functions, the periodic and quasi-
-periodic one, become “passive”, more specifically, when
the fastest mode contributes only insignificantly to the
spurious drift of BF, the average characteristics of the
ratchet-like transport of both the periodically and quasi-
-periodically forced BFs practically coincide.

4. Summary

The ratchet-like transport of the quasi-periodically
forced “bistable” fronts (BFs) joining two states of the
different stability in a bistable system of the reaction-
-diffusion type has been studied within the piecewise lin-
ear model of the system, by use of the macroscopic kinetic
equation of the reaction kinetics. The quasi-periodic ac
force acting on the front in the system was approximated
by the biharmonic, temporally irregular forcing func-
tion being a superposition of the single-harmonic com-
ponents (the Fourier modes) that were characterized by
the incommensurate, rationally independent frequencies.
By considering the response of the self-ordered front to
the biharmonic oscillatory forces, both the periodic and
quasi-periodic one, we have shown that: (a) The tempo-
rally irregular oscillations of the unbiased oscillatory forc-
ing shrink the spurious drift of BFs; the performance of
the ratchet-like shuttling of the quasi-periodically forced
BFs is much lesser pronounced if compared to that deriv-
able by the rigorously periodic ac force, in both cases of
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the symmetrical and asymmetrical rate functions satis-
fying the different symmetry. (b) The average character-
istics of the ratchet-like transport derivable by the dif-
ferent oscillatory forces, the periodic and quasi-periodic
one, deviate more significantly from each other in the
low-frequency range of the oscillatory forces, when the
frequency of the super-harmonic (fastest) mode of the
oscillatory forces used is lesser if compared to the char-
acteristic relaxation rate of the system. By contrast,
at the higher frequencies of the ac forces, beyond the
low-frequency domain discussed, the average character-
istics of the ratchet-like transport of both the periodi-
cally and quasi-periodically forced BFs are close to each
other. (c) Quite different, dissimilar reversal behavior
of the unforced dc motion of both the periodically and
quasi-periodically driven BFs is observed (identified) in
the low-frequency domain discussed.

Appendix: auxiliary functions of the speed
equation

The auxiliary functions ϕ(sA), ΨSn(sA) and Φ(sA) be-
ing inherent in the speed Eq. (2.9) are expressed as fol-
lows:

ϕ(sA) =
sAΦ(sA)
Q2(sA)

, ΨSn(sA) = FSn/FV , (A.1)

Φ(sA) =

{
arctanΨTg(sA), ΨTg(sA) > 0,

π − arctan (−ΨTg(sA)) , ΨTg(sA) < 0,

(A.2)
with the unknown functions being defined by the rela-
tions,

FSn = Q2(sA) [δ1K1(sA)− δ3K3(sA)] ,

FV = Q2
2(sA) + G2

1(sA) , (A.3)

ΨTg(sA) = FSn/FCn,

FCn = − [
Q2

2(sA) + G1(sA)G3(sA)
]

, (A.4)
where

Q2(sA) =
√

1− s2
A ,

K1,3(sA) = −sA ±
√

r1,3 + s2
A , (A.5)

G1,3 = −sA + δ1,3K1,3(sA) . (A.6)

The parameters δ1,3 and r1,3 in Eqs. (A.3) and (A.5)
are given by the following relations: δ1,3 = α2/α1,3 and
r1,3 = δ−1

1,3. The boundary conditions u0(z→∓∞)→u1,3

that have been discussed in the main text have been used
in the derivation of the presented expressions.
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