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This study is dedicated to the problem of estimating uncertainties of long-term noise indicators, when differ-
ences in the sound level emission at various time periods of the calendar year are taken into consideration. This
task is defined by referring their influence values — in the determined time intervals — to the year period. Due to
the limited possibilities of a total monitoring of parameters necessary for the precise estimation of the long-term
sound levels, this estimation process is often limited (in accordance with the EU environmental recommendations)
to two condition classes. They are defined by two sound levels occurring with probabilities (frequencies) p and
1 − p, in the analyzed reference period. In this paper we present a method of calculating uncertainties of this
procedure assuming that frequency of determined events are known. The probability distribution for the estimated
value was assessed. The developed model formalism of the estimation of uncertainties of long-term sound levels
together with algorithms assigned to it, was analyzed. The proposed solution was illustrated by examples of
uncertainty calculations of the averaged sound levels in acoustic assessments of environmental hazards.
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1. Introduction

One of the main issues while assessing the acoustic
hazards is estimation of the average sound levels L

(j)
LT in

various times of the day: j = 1, evening: j = 2, night:
j = 3 in the entire calendar year.

In accordance with the Standard PN-ISO 1996-2:1999
they are defined by the formula:

L
(j)
Aeq,LT = 10 log

(
N∑

i=1

100.1(LAeq,T )
i

)
, (1)

where N — number of samples for the reference time
interval T (j) of the analyzed time of the: day j = 1,
evening j = 2 and j = 3 night, of the considered calendar
day, (LAeq,T )i — equivalent sound level A [dB] for the
i-th sample in the considered reference time period T (j).

Long-term average equivalent sound levels can be de-
termined by various methods including calculating and
measuring while taking into the account:

• Numerous input parameters characterizing noise
emissions (from the noise sources) on the analyzed
sites, including knowledge of their acoustic power
levels as well as the equivalent sound levels — for
the periods of their characteristic activities in the
calendar year;
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• Variables, describing conditions of sound propaga-
tion for analyzed sites;

• Conditions of measurements in the analyzed local-
izations.

Their values constitute the input database for creating
acoustic maps of the analyzed places. They are one of
the information layers in the municipal System of Site
Information supporting the environment management.
They function within the Geographic Information Sys-
tem (GIS) and are explicitly related to geographic coor-
dinates of the analyzed site.

Following the European Commission recommendations
and domestic guidelines for preparing acoustic maps [1]
in the case when there are no complete data for their cal-
culations (until the precise obtaining of data will be pos-
sible) — the calculations of the long-term average noise
indicators can be simplified to the estimation of equiv-
alent sound levels of the basic noise sources, which are
forming them. Conditions of their activity, determined
by a percentage contribution of the noise emission in the
calendar year, should be taken into consideration.

This taking into consideration leads to the dependence

L
(j)
LT = 10 log

(
p100.1L

(j)
A + (1− p)100.1L

(j)
B

)
,

j = 1, 2, 3 , (2)
where p is the calendar year frequency of conditions oc-
curring within the calendar year, determined by the noise

(1086)
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level emission of the source L
(j)
A while 1− p corresponds

to the level L
(j)
B occurring in the relevant time interval.

An activity variable of the considered sound source can
be related to different excitations:

• Percentage fraction of workdays of noise source
emission level L

(j)
A in the calendar year versus the

percentage fraction of days in which it is limited to
the level L

(j)
B ;

• Probability p of an occurrence (in the calendar
year) of atmospheric conditions favoring the deter-
mined noise emission (e.g. wind, temperature, hu-
midity, or pressure) for the considered noise source
L

(j)
A versus the probability 1− p in which the noise

emission is on the level L
(j)
B ;

• Percentage fraction of heavy vehicles in the traffic
structure, creating emission conditions of the ana-
lyzed noise source in the whole year;

• Probability p of a source emission time L
(j)
B in the

calendar year, discussed at the background of fre-
quency 1− p of occurring conditions characteristic
for the acoustic background level L

(j)
B on the con-

sidered site, etc.

Such estimations of the long-term average sound levels
L

(j)
LT , in relation to the considered noise emission condi-

tions in the analyzed sites should be supplemented by
their uncertainty assessment at taking into account the
randomness of the sound levels measurement results LA

and LB . According to the rules given in the Guide to
the Expression of Uncertainty in Measurement issued by
the International Standardization Organization (ISO) [2]
recommended for applications in: Measure Service, ac-
credited laboratories and other institutes of technical in-
spections and control, uncertainty of the estimated quan-
tity U(x) expressed by the formula

U(x) = k(α)uc(x) (3)

is determined by the standard deviation s(x), of the ob-
servation xi; i = 1, 2, . . . , n observations multiplied by
the coverage factor k(α) and combined standard uncer-
tainty uc, being the probability distribution quantile of
the considered control variable x, calculated for the sig-
nificance level α of making an error in the assessment.

Realization of such procedure in relation to long-
-term average noise indicators L

(j)
LT requires the knowl-

edge of the distribution of the analyzed random variable
x = L

(j)
LT .

In the sequel, our attention will be focused on assess-
ing such distribution. The method of calculating of un-
certainties of the procedure determined by relation (2),
when knowing the occurrence frequency of the deter-
mined event creating the long-term average noise level
in the calendar year will be presented.

The developed model formalism of the uncertainty as-
sessment of long-term sound levels together with the al-
gorithm assigned to it — was analyzed. The proposed
solution was illustrated by examples of uncertainty cal-
culations of averaged sound levels in acoustic estimations
of environmental hazards.

2. Procedure of the determination of the
long-term average noise indicators

As mentioned earlier in the paper, the determination
of uncertainties of long-term average noise indicators, on
the grounds of correction of the characteristic sound lev-
els values creating acoustic hazards in the given site, in
relation e.g. to atmospheric conditions, requires the de-
termination of the random variable probability distribu-
tion LLT formula (2).

Its level is determined on the grounds of estimating in-
fluences of characteristic conditions of noise emission in
the whole calendar year. They are brought to the deter-
mination of the occurrence frequency p of the determined
noise emission in the group of random events of levels LA

and LB . Frequency p = t1
t1+t2

is determined by the expo-
sition time t1 of source A considered within the group of
conditions favoring the propagation of the acoustic wave
of level LA, and time t2 in which the exposition of the
noise level LB takes place.

When p = 1
2 , we have received logarithmic mean sound

level. Procedure of determination probability distribu-
tion of the logarithmic mean n-sound levels is described
in the publication [3].

It can be assumed that random variables LA and LB

are independent, and their probability density function
are ρLA(·), ρLB (·) together with their distribution func-
tions ΨLA

(·),ΨLB
(·). It should be recalled that LA is

determined in the interval [a, b], while LB in the interval
[c, d], where numbers a, b, c, d > 0.

It is assumed that the characteristic activity p ∈ [0, 1]
(frequency of occurrence) of random variables is known
X,Y : [X = p100.1LA , Y = (1− p)100.1LB ]. They are in-
dependent due to the independence of variables LA, LB .

In order to determine the random variable distribu-
tion (3) it is necessary to determine the distribution of
random variables X, Y .

Using the notation above we easily obtain the following
relationship:

ΨX(s) = P (X < s) = P (p100.1LA < s)

= P

(
LA < 10 log

(
s

p

))
= ΨLA

(
10 log

(
s

p

))
.

(4)
From the relation (4) we obtain

ΨX(s) = ΨLA

(
10 log

(
s

p

))
.

After calculating the derivative of the distribution
function LA we obtain the equation for the destiny func-
tion
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ρX(s) =
d [ΨX(s)]

ds
=

d
[
ΨX

(
10 log

(
s
p

))]

ds

= ρLA

(
10 log

(
s

p

)) d
[
10 log

(
s
p

)]

ds

=
10

s ln 10
ρLA

(
10 log

(
s

p

))
,

s ∈ [
p100.1a, p100.1b

]
(5)

By a similar procedure the distribution and the density
functions for the variable Y can be determined

ΨY (s) = ΨLB

(
10 log

(
s

1− p

))

and

ρY (s) =
10

s ln 10
ρ

(
10 log

(
s

1− p

))
,

s ∈ [
(1− p)100.1c, (1− p)100.1d

]
. (6)

Distribution of the random variable sum X + Y can
be determined by means of the probability distribution
convolution [4, 5].

Denote via ρX+Y (·) the destiny of the variable X +Y .
Then

ρX+Y (z) = ρX ∗ ρY (z) =
∫ z

−∞
ρX(x)ρY (z − x)dx .

(7)

Substituting (5) and (6) into (7) the following is obtained:

ρX+Y (z) =
(

10
ln 10

)2 ∫ z−(1−p)100.1c

p100.1a

1
x(z − x)

ρLA

×
(

10 log
(

x

p

))
ρLB

(
10 log

(
z − x

1− p

))
dx . (8)

The next step is the probability distribution calcula-
tion

LLT = 10 log(X + Y ) ,

ρLLT (z) =
d [P (LLT < z)]

dz

=
d [P (10 log(X + Y ) < z)]

dz

=
d

[
P

(
X + Y < 100.1z

)]

dz
=

d
[
ΨX+Y

(
100.1z

)]

dz

= ρX+Y

(
100.1z

) d
[
100.1z

]

dz

=
ln 10
10

100.1zρX+Y (100.1z) . (9)

Finally from the relation (9) we obtain

ρLLT
(z) =

ln 10
10

ρX+Y

(
100.1z

)
. (10)

Inserting (8) to (10) we get

ρLLT
(z) =

10
ln 10

∫ 100.1z−(1−p)100.1c

p100.1a

100.1z

x (100.1z − x)
ρLA

×
(

10 log
(

x

p

))
ρLB

(
10 log

(
100.1z − x

1− p

))
dx ,

s ∈ [z0, z1] , (11)

where the endpoints of the determination ability interval
of the variable LLT are given by

z0 = p100.1a + (1− p)100.1c,

z1 = p100.1b + (1− p)100.1d.
Equation (11) allows calculating the probability distri-

bution of the long-term average noise indicator given by
Eq. (2). This, in turn, leads to calculations of expected
value and variance as

ELLT =
∫ z1

z0

zρLLT
(z)dz , (12)

E (LLT )2 =
∫ z1

z0

z2ρLLT (z)dz , (13)

Var (LLT ) = E (LLT )2 − (ELLT )2 . (14)

3. Example

In order to illustrate the work of the algorithm of
the probability distribution estimation of the long-term
average noise indicators LLT functions, the knowledge
of sound levels distributions LA and LB was assumed.
It was assumed that distribution is Gaussian trimmed
to the relevant interval. This hypothetical assumption
closely corresponds to the widely accepted assumption
of normality of such observations. However, in the fur-
ther analysis it should be taken into account that exper-
imental investigations indicate (see [6]) that is reason-
able to use other distributions that are not symmetric,
left-skewed with the kurtosis significantly different than
zero.

In the case when the random variable X is of the Gaus-
sian trimmed distribution on the interval [a, b] with the
expected value µ ∈ [a, b] and the standard deviation σ,
its probability distribution is as follows:

ρX(x) =





1
FX(b)−FX(a)

1√
2πσ

exp
(
− (x−µ)2

2σ2

)
,

a ≤ x ≤ b,

0, x /∈ [a, b],

where

FX(x) =
∫ x

−∞

1√
2πσ

exp
(
− (t− µ)2

2σ2

)
dt .

Let us mark such distribution by X ∼ N[a,b](µ, σ).
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Analysis of theoretical properties of the probabil-
ity density function of the long-term average noise in-
dicators was performed for random variables LA ∼
N[55,75](65, 1.5) and the LB ∼ N[45,65](58, 1.5). Below,
we show graphs of the random variables distribution, for
various values of the parameter p.

Fig. 1. Density function of LLT for p = 0.

Fig. 2. Density function of LLT for p = 0.25.

Fig. 3. Density function of LLT for p = 0.5.

Calculation rules of the density probability function
of the long-term average noise indicator proposed in
paragraph 2 and based on random variable LLT =
10 log(p100.1LA +(1−p)10LB ) were constructed by means
of the convex combination of random variables 10LA and
100.1LB describing the energy distribution of sound lev-
els LA and LB . In discussed experiments n = 2000 re-
sults of control variables LA and LB were generated. To
determine the density functions we have used the nu-
merical integration methods — the Simpson method and

Fig. 4. Density function of LLT for p = 0.75.

Fig. 5. Density function of LLT for p = 1.

trapezoids method. Results of calculations are shown in
Table, and shapes of density functions are illustrated in
diagrams of Figs. 1–5. In cases when p = 0 or p = 1 we
are dealing with extreme distributions, i.e. when p = 0
then LLT = LB and when p = 1 then LLT = LA.

It is seen in the diagrams that when p varies within the
interval (0, 1) distribution characteristics are also chang-
ing, which means that percentage contributions of each
described effect is changing in the similar fashion. The
expected values are marked in graphs by perpendicular
lines in the middle; determination intervals — extreme
lines; quantiles left (0.05) and right (0.95) — inside lines.
It is worth to noting that the expected value of the vari-

TABLEResults of calculations.

P = 0 P = 0.25 P = 0.5 P = 0.75 P = 1

beginning
of the
interval z0

45 50.1188 52.4036 53.8930 55

left
quantile
(0.05) ql

59.3588 60.8336 61.8030

expected
value M

58 61.1354 62.8523 64.0562 65

right
quantile
(0.95) qr

62.9888 64.9936 66.4130

end of the
interval z1

65 70.1188 72.4036 73.8930 75

standard
deviation s

1.5 1.1027 1.2671 1.4003 1.5
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able LLT is changing from the expected value of variable
LB : µB = 58 for p = 0 to the expected value of variable
LA : µA = 65: for p = 1 µLLT

∈ [58, 65]. The confidence
intervals and standard deviations behave in a similar way.

4. Summary and conclusion

Important result of this paper is to sketch out method
of determination of the algorithm of estimation of the
probability density function for the long-term noise in-
dicators, estimated by simplified method measurement-
-calculation, when knowing characteristic activity peri-
ods of the source creating the acoustic state in the ana-
lyzed environmental site.

This is a new, strict approach to estimation uncertain-
ties of long-term average noise indicators, for the custom-
arily procedure in the consideration of control of acoustic
environment. In contrast to existing rules for the evalua-
tion of uncertainty recommended in guide [2], the essence
of this approach is to assume the propagations principle
as the basis for the calculation uncertainties of outcome
control and to give the possibility to skip over a series of
troubling assumption used so far in practice.

Formulated algorithm is the universal tool for estimat-
ing uncertainties of the analyzed noise indicators. The
possibility of the proper uncertainty assessment for an
arbitrary form of the sound level probability distribution
of the source and of the acoustic background deserves
attention.

Development of proposed method will be concerned
on a case when the p percentage fraction of participation
weekdays noise emission of source L

(j)
A in the calendar

year to the 1−p percentage fraction days whose emission
is limited to the level L

(j)
B , will be random variable.

The results of the simulation numerical experiments
indicated asymmetry of the density distribution function
for the long-term average sound levels. Thus, it sug-
gests the necessity of a very cautious use of the so far
applied methods of assessments of standard uncertain-
ties of controlled noise indicators. These methods base

on generally recommended guidelines contained in the
publication Guide to the Expression of Uncertainty in
Measurement [2], which assume the normality of the ob-
servation distribution form, which is not justified by the
control practice [6].

To summarize considerations performed in this paper,
it can be stated that the presented modus operandi at
the estimation of the long-term noise indicators does not
create any limitations and — in future — will be more
broadly applied in various control algorithms. It can also
serve as the reference base for the correctness assessment
of recently used estimation methods. It can supplement
them in several analyses.
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