
Vol. 119 (2011) ACTA PHYSICA POLONICA A 6-A

Acoustic and Biomedical Engineering

Acoustic Impedance of Outlet of a Hard-Walled Unbaffled
Cylindrical Duct for Multimode Incident Wave

J. Jurkiewicza, A. Snakowskab,∗ and D. Smolikc

aFaculty of Electrical Engineering, Automatics, Computer Science and Electronicsand Electronics, AGH
al. A. Mickiewicza 30, 30-059 Cracow, Poland

bFaculty of Mechanical Engineering and Robotics, AGH, al. A. Mickiewicza 30, 30-059 Cracow, Poland
cFaculty of Physics and Applied Computer Science, AGH, al. A. Mickiewicza 30, 30-059 Cracow, Poland

In the paper, the specific acoustic impedance of outlet of an unbaffled duct for incident wave composed of
one or many circumferential cut-on duct modes has been derived and presented on graphs. When considering the
multimode excitation the equal energy per mode principle and random phases have been assumed. Experimentally
verified assumption on equal energy per mode allows for quantitative analysis of the sound field and thus
provides more physical insight into the in-duct and out-duct phenomena. The assumption of random phase was
implemented by means of the Monte Carlo method and so the expected value, the standard deviation and the
percentile curves of the impedance were presented. Numerical data obtained according to the derived theoretical
formulae for single and multimode incident wave manifest strong modal character and dependence on the modes
phases. The assumption of multimode incident wave has brought the theoretical model closer to what is being
observed in practice, especially when ducts of large radius, such as heating and air conditioning systems or
turbojet engines, are considered.

PACS: 43.20.Mv, 43.20.Rz

1. Introduction

Impedance is a quantity that reflects the condition of
the acoustic wave propagation outside the duct and thus
plays an important role in qualitative and quantitative
description of the acoustic field. Before the diffraction
problem was solved, the most commonly used models as-
sumed the duct outlet located in an infinite rigid baffle.
Its specific acoustic impedance for the plane wave was for
the first time calculated by Rayleigh [1]. This formula is
still frequently used in many technical applications, even
in cases when it presents a very rough estimate. Later
Zorumski [2] extended Rayleigh’s results on modes other
than the plane wave. Snakowska and Wyrzykowski [3]
calculated the specific impedance of the unbaffled duct
outlet for a single radial mode propagating towards the
open end taking into account the diffraction phenomena.

The solution of the wave equation obtained for the
unbaffled duct and the plane wave incident by Levine
and Schwinger [4], generalized later on arbitrary single
cut-on mode [5, 6], even though mathematically compli-
cated, allows for deriving mathematical formula of the
impedance and its numerical calculations. The results
obtained within such a model describe better real-life de-
vices containing duct-like elements. The one-mode inci-
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dent wave approach is commonly applied, even by au-
thors analyzing the sound field of modern turbofan en-
gines [7], for which the Helmholtz number (diffraction
parameter) is much above the cut-on value of many ra-
dial and circumferential modes. Anyhow, in practice the
phenomena are even more complicated. Inside jet en-
gines, but also ventilation, heating or cooling systems etc.
the most frequent is the so-called multimodal excitation,
when the wave heading the outlet is a superposition of
many duct-modes. Mathematically it is trivial — such a
wave is represented by superposition of single-mode po-
tentials — as long as quantitative analysis, calling for
knowledge of amplitudes and phases of modes constitut-
ing the incident wave, is not the goal. Thus, as Joseph
and Morfey have concluded [8], comparatively little pa-
pers have been published aimed at understanding multi-
modal radiation, especially the phenomena at the outlet
and outside the duct. The far field radiation is usually
characterised by means of the root mean square pres-
sure [8], thereby modes phases and interference effects
are neglected.

In this paper, the equal energy per mode (EEpM) has
been assumed, while phases have been assumed random.
The model assuming equal energy per mode, presented by
Snakowska [9] has became a common way of describing
the multimode propagation in circular ducts [7]. How-
ever, modes phases had not been, in general, included in
the field description, that was equivalent to the incoher-
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ent sources approximation.
In this paper, a strong dependence of the outlet acous-

tic impedance on the modes phases, based on numerical
results obtained by means of the Monte Carlo method,
will be examined. Assumption of multimode excitation
and random phases better reflects practical acoustic fields
of many duct-like devices and allows for its quantitative
analysis, thus providing more physical insight into in-
-duct and out-duct phenomena.

2. Governing equations

The outlet of a semi-infinite cylindrical waveguide can
be considered as a circular source located in a cylindrical
baffle of given material properties, such as for example —
soft, hard, impedance etc. surface. Propagation of the
acoustic wave inside and its radiation outside through
the outlet is mathematically described by the wave equa-
tion for the acoustic pressure or velocity potential [10]
together with the adequate boundary condition (Dirich-
let, Neumann, impedance, etc.) given on the semi-infinite
cylinder. Such mathematical formulation of the consid-
ered problem, accounting for diffraction phenomena can
be solved by means of the Wiener–Hopf factorization
method [11]. For harmonic excitation, which will be as-
sumed in what follows, the wave equation reduces to the
Helmholtz equation [10]. The knowledge of the acoustic
pressure or potential allows for thorough qualitative and
quantitative field analysis and, in particular, calculation
of the acoustic impedance. For a hard/soft duct excited
harmonically with a given frequency ω there is a limited
number of propagating modes, depending on the duct ra-
dius a [10], thus the in-duct phenomena are described by
means of the diffraction parameter ka = ωa/c, called also
the reduced frequency or the Helmholtz number. The
frequency limit between propagating and exponentially
dumped modes is called the cut-off frequency. In a hard
duct, the cut-off frequency of the plane wave is zero, so
it propagates in a duct of any radius at any frequency.

Fig. 1. Geometry of the problem.

For ducts important from practical point of view, as
they constitute components of air-conditioning, ventila-
tion or heating systems, jet engine casings etc., the inci-
dent wave is most frequently a superposition of a num-
ber of cut-on (propagating) modes i.e. modes cut-off fre-
quency of which extends the excitation frequency. Then,

the acoustic potential of the incident wave is a sum of
single mode potentials and the resultant field can be ex-
pressed as a sum of the incident and diffracted field of the
propagating modes [6]. In cylindrical coordinates system
(%, ϕ, z) (Fig. 1) it reads

Φ(%, ϕ, z, t) =
∑

m,l

Φinc
m,l(%, ϕ, z, t)

+
∑

m,l

Φdif
m,l(%, ϕ, z, t) . (1)

For the single (m, l) incident mode of amplitude Aml the
resultant time-independent part of the potential takes the
form [6]:

Φml(%, ϕ, z) = Aml e imϕ

[
Jm

(
µml

%
a

)

Jm(µml)
e iγmlz

+
∞∑

n=1/0

Rmln

Jm

(
µmn

%
a

)

Jm(µmn)
e− iγmnz

]
, (2)

where the axial wave number γmn equals

γmn =
√

k2 − µ2
mn/a2 , (3)

Jm is the Bessel function of m-th order, µmn/a is the
radial wave number adequate for the imposed bound-
ary condition (hard wall) and µmn is the n-th root of
the derivative J ′m, Rmln is the wave amplitude reflec-
tion/transformation coefficient [6]. It can be seen that at
the outlet each of the incident modes (m, l) transforms,
due to diffraction, into all cut-on modes of the same cir-
cumferential order, i.e. (m, l)→ (m,n). The summation
over subscript n is carried out to infinity, even though
for µmn > ka, the respective factors represent waves of
purely imaginary axial wave numbers, which means that
these waves are attenuated exponentially with the dis-
tance from the outlet. As the impedance of the outlet is
calculated for z = 0, in exact formulae these terms of the
infinite series should be also taken into account. How-
ever, in practice the sum is usually cut-off at n = Nm,
where µmNm/a denotes the index of “the highest of the
propagating modes” (with the real axial wave number) of
circumferential order m at a given ka. Such a procedure
was applied in numerical calculations presented below.
The n = Nm number can be as well derived from the
relation µmNm+1 ≥ ka > µmNm .

3. The acoustic specific impedance
of the duct outlet

To derive the acoustic impedance of the duct outlet
one has to calculate the acoustic pressure p = ρ0∂tΦ,
the acoustic velocity v = −∇Φ and its normal compo-
nent vn, the root mean square normal velocity 〈|vn|2〉 =
1
S

∫
S

vnv∗n ds, and the radiated power P =
∫

pv∗n ds, be-
cause for the non-uniform pressure and velocity distribu-
tion on the duct cross-section the specific impedance is
defined as [3]:
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Z =
P

S〈v2
n〉

. (4)

3.1. Single mode excitation

For given incident mode (m, l), according to (2), (4)
and the formulae quoted in the text one obtains

Zml = ωρ0 (5)

×
∑Nm

n=1/0 γmnWmn

(
δnl + 2iδnl ImRmll − |Rmln|2

)
∑Nm

n=1/0 γ2
mnWmn (δnl − 2ReRmll + |Rmln|2)

,

Xml = ReZml = ωρ0 (6)

×
∑Nm

n=1/0 γmnWmn

(
δnl − |Rmln|2

)
∑∞

n=1/0 γ2
mnWmn (δnl + 2|Rmll| cos θmll + |Rmln|2) ,

Yml = ImZml = −ωρ0 (7)

× 2γmlWml|Rmll| sin θmll∑∞
n=1/0 γ2

mnWmn (δnl + 2|Rmll| cos θmll + |Rmln|2) ,

where summation starts from n = 0 only for m = 0 (axi-
symmetrical excitation) andWmn component appears as
a result of integrating the product of the Bessel functions
over the duct cross-section and is equal to (1−m2/µ2

mn),
except for m = 0, n = 0, when it equals 1 [12].

3.2. Multimode incident wave of the same
or different circumferential orders m

In the case of multimode excitation, when the inci-
dent wave is a superposition of many modes of the same
circumferential order m and so the acoustic potential
Φinc

m (%, ϕ, z) =
∑

l Φ
inc
ml (%, ϕ, z), the resulting acoustic

field inside the duct is composed of terms represent-
ing incident and diffracted modes and takes the form

Φm(%, ϕ, z) =
∑

l Φml(%, ϕ, z), where Φml was defined in
Eq. (2). The acoustic pressure pm and velocity vm have
to be calculated from the potential Φm and the specific
impedance of the outlet can be symbolically expressed as
Zm = Pm

S〈v2
mn〉 , where the subscript n means, as before,

the component of the acoustic velocity vm normal to the
duct outlet. To derive formulae for the specific acous-
tic impedance in multimode excitation, it is convenient
to apply the matrix formalism, as the quadruple sums
appear in calculations leading to the result.

Introducing for a given matrix X a symbol (X)l
n repre-

senting the element of line l and column n of this matrix,
the specific acoustic impedance takes the form

Zm =
(A(I + R)M (1)A†)11

S(A(I −R)M (2)A†)11
ωρ0 . (8)

The matrix elements A, R and M (k) for k ∈ {1, 2} are
defined as:

A1
n ≡ Amn , n = 1, . . . , Nm ,

Rl
n ≡ Rmln , l, n = 1, . . . , Nm ,

M (k)l
n ≡ (δln −Rn∗

l )γk
mlWml

J2
m(µml)

, l, n = 1, . . . , Nm . (9)

The explicit forms of these matrices are as follows:

A =
(

Am1 Am2 . . . AmNm

)
, (10)

R =




Rm11 Rm12 . . . Rm1Nm

Rm21 Rm22 . . . Rm2Nm

...
...

. . .
...

RmNm1 RmNm2 . . . RmNmNm




, (11)

M (k) =




(1−R∗m11)γ
k
m1Wm1

J2
m(µm1)

−R∗m21γk
m1Wm1

J2
m(µm1)

. . .
−R∗mNm1γk

m1Wm1

J2
m(µm1)

−R∗m12γk
m2Wm2

J2
m(µm2)

(1−R∗m22)γ
k
m2Wm2

J2
m(µm2)

. . .
−R∗mNm2γk

m2Wm2

J2
m(µm2)

...
...

. . .
...

−R∗m1Nm
γk

mNm
WmNm

J2
m(µmNm )

−R∗m2Nm
γk

mNm
WmNm

J2
m(µmNm ) . . .

(1−R∗mNmNm
)γk

mNm
WmNm

J2
m(µmNm )




. (12)

The I symbol represents a unit matrix of size Nm×Nm,
while A† means Hermitian conjugate of the matrix A:

A† =




A∗m1

A∗m2
...

A∗mNm




. (13)

The wave propagating inside the duct and heading
the outlet represents, in its most general form, a su-
perposition of modes of different radial l and circumfer-

ential m order, therefore the acoustic potential of the
incident wave reads Φinc(%, ϕ, z) =

∑
m Φinc

m (%, ϕ, z) =∑
m

∑
l Φ

inc
ml (%, ϕ, z). Excitation of that kind is fre-

quently considered in papers related to noise propagat-
ing from the turbofan engine inlet (the outlet on the
fan side). In general, the number of modes which are
cut-on increases abruptly with the non-dimensional fre-
quency (the Helmholtz number) ka, and so for ka = 10
the total number of the cut-on modes is N10 = 18, for
ka = 20, N20 = 59, whereas for ka = 30 it increases
up to N30 = 126. However, in numerous applications,
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because of specific features and symmetries of the sound
sources or the devices located inside the duct [13, 14],
the modes of selected circumferential order will be ex-
cited particularly strongly [15]. This takes place inside
turbofan engines, with a defined number of compressor
van and fan blades.

The specific impedance of the outlet can be symboli-
cally expressed as

Z =
∑

m Pm

S
∑

m〈v2
mn〉

, (14)

which means that it can be expressed as a fraction in
which the numerator is a sum over m of numerators of
Eq. (5), and respectively — the denominator is a sum of
dominators of (5).

4. Numerical calculations

Numerical calculations were carried on according to
Eqs. (4)–(8) and (14) and also formulae inserted in the
text. They include the single mode non-axial excitation,
but also the multimode incident wave of a given or dif-
ferent circumferential order. The case of axisymmetric
incident wave was analysed in earlier paper [3]. Figures
2–7 present the relative specific impedance ZR, defined
as ratio of the specific impedance to the characteristic
resistance of the medium ρ0c, thus ZR = Z/ρ0c.

Fig. 2. Modulus of the relative specific acoustic
impedance ZR of the duct outlet for single asymmet-
ric incident modes (1, l) versus diffraction parameter ka.
Numbers by the curves represent corresponding l values.

Fig. 3. Argument of the relative specific acoustic
impedance ZR of the duct outlet for single asymmet-
ric incident modes (1, l) versus diffraction parameter ka.
Numbers by the curves represent corresponding l values.

Fig. 4. The same as in Fig. 2, but for incident modes
(5, l).

Fig. 5. The same as in Fig. 3, but for incident modes
(5, l).

Fig. 6. The same as in Fig. 2, but for incident modes
(40, l).

Fig. 7. The same as in Fig. 3, but for incident modes
(40, l).
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4.1. Single non-axial mode (m 6= 0) excitation

The impedance of the single non-axial mode was com-
puted and presented on graphs for the circumferential
order m = [1, 5, 40] and all possible values of radial order
which represent propagating mode in the range of con-
sidered diffraction parameter ka — [0–30] for m = 1 and
m = 5 and [40–70] for m = 40, as the cut-on reduced
frequency of the mode (40, 1) extends 40 [12]. The re-
sults confirm the modal character of the specific acoustic
impedance of the outlet. For large values of ka the real
part tends to 1, the imaginary part — to 0, the minima
appear for ka equal to the reduced cut-on frequency of a
subsequent mode with the maxima between them. These
main features can be observed for any number of the
mode circumferential order, same for m = 1 or m = 40.

4.2. Multimode incident wave of a given
circumferential order m

As was mentioned before, inside jet engines, but also
ventilation, heating or cooling systems etc., when the
duct radii are large and the excitation frequencies are
high, the wave heading to the outlet is usually superpo-
sition of radial and circumferential modes.

Multimode excitation complicates quantitative analy-
sis of the resultant field, as it needs deriving complex
amplitudes of consecutive modes. These amplitudes can
be derived by solving inhomogeneous wave equation for
a given source distribution inside the duct [13] or by
adopting some additional assumptions. The inhomo-
geneous wave equation has been solved only for some
simple inside-duct source distributions, which in turn do
not model properly the features of real sources such as
large fans mounted inside jet engines or ventilation/air-
-conditioning systems. The possible way to overcome
this difficulty consists in assuming arbitrary amplitudes
of modes or consider some specific features of the anal-
ysed setup, that would allow to predict which modes
might have predominated in the incident wave or assume
EEpM, as was proposed by Snakowska [9] and applied by
other authors [7, 8]. Mathematically the last assumption
is legitimised by the orthogonality of the Bessel func-
tions [12] appearing in the solution of the wave Eq. (2),
and experimentally — by results obtained by Bolleter
and Crocker [16].

Below, we present numerical results for the multimode
incident wave, composed of all cut-on modes of a given
circumferential order m versus ka. The power of the in-
cident wave has been assumed constant and distributed
between the cut-on modes in equal parts. As a result, the
imposed amplitudes moduli have been chosen according
to the assumption on EEpM, while the phases have been
assumed random. The numerical calculations were car-
ried out by means of the Monte Carlo method, with 104

realisations.
Assumption of EEpM in the multimode incident wave

allows to determine the consecutive mode amplitudes [9]:

|Amn| : |Am′n′ | =
√

γm′n′Wm′n′

γmnWmn
, (15)

so

|Amn| = 1
Ntot

√
2P inc

πa2ρ0ckγmnWmn
, (16)

where Ntot denotes the number of modes present in the
incident wave and P inc — its power.

Fig. 8. Modulus of the relative specific acoustic
impedance ZR of the duct outlet for multimode inci-
dent wave of circumferential order m = 0 versus diffrac-
tion parameter ka with amplitudes selected according
to EEpM assumption and random phases. Fine lines
represent percentiles, bold lines — the expected value
E(ZR) and E ± σ, where σ means standard deviation.

Fig. 9. Argument of the relative specific acoustic
impedance ZR of the duct outlet for multimode inci-
dent wave of circumferential order m = 0 versus diffrac-
tion parameter ka with amplitudes selected according
to EEpM assumption and random phases. Fine lines
represent percentiles, bold lines — the expected value
E(ZR) and E ± σ, where σ means standard deviation.

The results are presented in Figs. 8–14. Figures
8–13 present the modulus and argument of the relative
impedance versus ka for m = [0, 1, 5]. Each figure con-
tains curves of the maximum and minimum values and
percentiles drawn with the step 5% (fine lines) as well as
the expected value E(ZR) and the expected value plus/
minus the standard deviation σ(ZR) (bold lines). As be-
fore — in single mode excitation, the graphs reveal their
modal character with modulus minima at cut-on reduced
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Fig. 10. The same as in Fig. 8, but for incident modes
m = 1.

Fig. 11. The same as in Fig. 9, but for incident modes
m = 1.

Fig. 12. The same as in Fig. 8, but for incident modes
m = 5.

Fig. 13. The same as in Fig. 9, but for incident modes
m = 5.

Fig. 14. Distribution of the real ReZR (horizontal
axis) and imaginary ImZR (vertical axes) parts of the
relative impedance for the circumferential order m = 1
and different values of ka.

Fig. 15. The same as in Fig. 8, but for circumferential
orders m = [1, 5].

frequencies of consecutive modes. Limiting the range of
obtained results to [5–95] percentiles significantly nar-
rows the range of the impedance values, especially the
argument (cf. Figs. 9, 11, 13). Figure 14 presents dis-
tribution of the real ReZR and imaginary part ImZR

of the relative impedance for the circumferential order
m = 1 and different values of ka. If ka = 6, only two

Fig. 16. The same as in Fig. 9, but for circumferential
orders m = [1, 5].
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modes constitute the incident wave and the distribution
of the impedance values takes the form of an elipse axis
of which rotates with increasing ka as can be seen on the
graph for ka = 7, up to the appearance of the third mode
in the incident wave (cf. ka = 10). The next two graphs
(Figs. 15 and 16) present the distribution for ka slightly
below ka = 11.675 and above ka = 11.75 the cut-on fre-
quency of the fourth mode and it can be observed how
it changes the space of possible values of the real ReZR

and imaginary part ImZR.

4.3. Multimode incident wave of different
circumferential orders

Propagation of wave composed of modes of different
circumferential orders was discussed by Joseph et al. [15]
for the noise raised inside a turbofan engine. In the pre-
sented numerical simulation excitation of the acoustic
wave, it was assumed to be due to periodic wake interac-
tion at the blade passing frequency by the stator vanes
from the rotor stage. The duct, stator and fan param-
eters were standardised according to modern turbofan
engines. The rotor was assumed to comprise of B = 25
blades, the stator stage — V = 30. The orders of cir-
cumferential propagating modes were derived from the
criterion formulated by Tyler and Sofrin [17]:

m = nB − pV , p = ±1,±2,±3 , (17)

which, together with the cut-on condition accounting for
the blade tip Mach number and the intake flow Mach
number [8], indicate that only the m = 5 mode can prop-
agate, with other modes being cut-off. Therefore com-
puter simulations were carried out for m = 5 modes, ex-
cited through rotor–stator interaction and additionally
m = 1 propagating modes. Below, the relative acoustic
impedance, for a sum of propagating modes of these two
circumferential orders are presented in Figs. 15 and 16.
Numerical study was performed under the discussed as-
sumptions on EEpM and random phases.

5. Conclusions

The formulae for the specific acoustic impedance of
the outlet of a hard semi-infinite cylindrical waveguide
for multimode incident wave propagating towards the
open end have been derived accounting for diffraction
phenomena, resulting not only in incident modes reflec-
tion but also their transformation in all possible modes of
the same circumferential order. The assumption of mul-
timode incident wave has brought the theoretical model
closer to what is being observed in practice, especially
when ducts of large radius, such as heating or air condi-
tioning systems or turbojet engines, are considered. The
exact mathematical formulae containing infinite series
have been adopted to numerical calculations by neglect-
ing in the diffracted term of the acoustic potential the

attenuated modes, with pure imaginary axial wave num-
ber. Numerical results presented on graphs have been
obtained based on assumption of EEpM in the incident
wave and of random mode phases. The assumption of
random phase was realised by means of the Monte Carlo
method. The results of numerical calculations carried out
according to derived theoretical formulae for single and
multi-mode incident wave were presented on graphs. The
detailed analysis of many graphs, some of which were in-
cluded in this paper, indicate strong dependence of the
outlet impedance on the modes phases and also confirm
significant difference between the approach presented in
the paper and the plane wave approximation, frequently
applied in technical considerations. The above-presented
results may serve in future as a tool for deriving analo-
gous formulae for the impedance of a soft or sound ab-
sorbing wall duct outlet.
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